[1]
R. Wu, S. Mendy, J. O. Gonzalez, S. Jahdi and O. Alatise, Current Sharing of Parallel SiC MOSFETs under Short Circuit Conditions," 2021 23rd European Conference on Power Electronics and Applications (EPE,21 ECCE Europe), 2021, pp.1-9.
DOI: 10.23919/epe21ecceeurope50061.2021.9570690
Google Scholar
[2]
R. Wu, S. Mendy, N. Agbo, J. Ortiz Gonzalez, S. Jahdi, and O. Alatise. 2021. Performance of Parallel Connected SiC MOSFETs under Short Circuits Conditions, Energies 14, no. 20: 6834.
DOI: 10.3390/en14206834
Google Scholar
[3]
R. Wu, S. N. Agbo, S. Mendy, E. Bashar, S. Jahdi, O. Gonzalez, et al., Measurement and simulation of short circuit current sharing under parallel connection: SiC MOSFETs and SiC Cascode JFETs,, Microelectronics Reliability, vol. 126,p.114271, (2021).
DOI: 10.1016/j.microrel.2021.114271
Google Scholar
[4]
J. Hu et al., Robustness and Balancing of Parallel-Connected Power Devices: SiC Versus CoolMOS,, in IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp.2092-2102, April 2016,.
DOI: 10.1109/tie.2015.2500187
Google Scholar
[5]
J. Hu, O. Alatise, J. A. O. González, R. Bonyadi, L. Ran and P. A. Mawby, The Effect of Electrothermal Nonuniformities on Parallel Connected SiC Power Devices Under Unclamped and Clamped Inductive Switching,, in IEEE Transactions on Power Electronics, vol. 31, no. 6, pp.4526-4535, June 2016,.
DOI: 10.1109/tpel.2015.2477831
Google Scholar
[6]
2016. Power MOSFET Basics: Understanding Gate Charge and Using it to Assess Switching Performance. [ebook] Vishay, pp.1-2. Available at: <https://www.vishay.com/docs/73217/an608a.pdf> [Accessed 18 October 2021].
Google Scholar
[7]
Li, W., Mao, S., Yang, S., Ding, Y. and Zeng, K., 2021. Modeling and Analysis of the Switching Characteristics Difference for Paralleling SiC MOSFETs in Multichip Power Modules,. 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). [online] Wuhan: IEEE, p.217,222.
DOI: 10.1109/wipdaasia51810.2021.9656044
Google Scholar
[8]
Li, H., Munk-Nielsen, S., Wang, X., Maheshwari, R., Beczkowski, S., Uhrenfeldt, C. and Franke, W., 2015. Influence of Device and Circuit Mismatch on Paralleling Silicon Carbide MOSFETs,. IEEE Transactions on Power Electronics ( Volume: 31, Issue: 1, Jan. 2016). [online] IEEE, pp.621-633.
DOI: 10.1109/tpel.2015.2408054
Google Scholar
[9]
Wei, Y., Woldegiorgis, D., Du, X., Machireddy, V. and Mantooth, A., 2021. Comprehensive Investigations on Paralleling Operation of SiC MOSFETs based on Subbcircuit Model in MATLAB/SIMULINK,. 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia). [online] Wuhan: IEEE, p.176.
DOI: 10.1109/wipdaasia51810.2021.9656101
Google Scholar
[10]
M'Sirdi, Nacer et al. (2019). State Space Models for Power SiC MOSFET: ICEERE (2018).
Google Scholar
[11]
M. Jin et al. A Temperature-Dependent SiC MOSFET Modeling Method Based on MATLAB/Simulink,, in IEEE Access, vol. 6, pp.4497-4505, (2018).
DOI: 10.1109/access.2017.2776898
Google Scholar
[12]
H. Linewih and S. Dimitrijev, Channel-carrier mobility parameters for 4H SiC MOSFETs,, 2002, pp.425-430 vol.2.
DOI: 10.1109/miel.2002.1003290
Google Scholar
[13]
J. O. Gonzalez, R. Wu, S. Jahdi and O. Alatise, Performance and Reliability Review of 650 V and 900 V Silicon and SiC Devices: MOSFETs, Cascode JFETs and IGBTs,, in IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp.7375-7385, Sept. 2020,.
DOI: 10.1109/tie.2019.2945299
Google Scholar