Rapid Thermal Anneal with Conductive Heating for SiC Contact Formation

Article Preview

Abstract:

This paper explains the potential of a heat conduction based RTA (Rapid Thermal Anneal) system (Levo) to overcome the main shortcomings of conventional lamp heated tools systems for silicide top contact anneal during SiC MOSFET device fabrication. The advantage of conductive heating is that the radiation-related properties, like transparency of the wafer, does not play a role, and consequently, that the whole rapid thermal anneal becomes independent of wafer type. In this study SiC wafers and Si wafers (both 200mm) were annealed consecutively without any system adjustment. The silicon wafers were used to qualify the process (contamination / within-wafer uniformity and wafer-to-wafer repeatability).

You have full access to the following eBook

Info:

* - Corresponding Author

[1] Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology, 1st ed.; John Wiley & Sons: Singapore, 2014.

Google Scholar

[2] Roccaforte, F.; Fiorenza, P.; Greco, G.; Lo Nigro, R.; Giannazzo, F.; Patti, A.; Saggio, M. Challenges for energy efficient wide band gap semiconductor power devices. Phys. Status Solidi A 2014, 211, 2063–2071.

DOI: 10.1002/pssa.201300558

Google Scholar

[3] Z. Wang, S. Tsukimoto, M. Saito and Y. Ikuhara; Introducing Ohmic Contacts into Silicon Carbide Technology; WPI Research Center, Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba-ku, Japan Silicon Carbide – Materials, Processing and Applications in Electronic Devices

DOI: 10.5772/20481

Google Scholar

[4] Kimoto, T. Material science and device physics in SiC technology for high-voltage power devices. Jpn. J. Appl. Phys. 2015, 54, 040103.

DOI: 10.7567/jjap.54.040103

Google Scholar

[5] She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205.

DOI: 10.1109/tie.2017.2652401

Google Scholar

[6] F. Roccaforte, G. Brezeanu, P.M. Gammon, F. Giannazzo, S. Rascunà, M. Saggio, Schottky contacts to silicon carbide: physics, technology and applications, in "Advancing Silicon Carbide Electronics Technology vol. I", Mater. Res. Found. 37(2018) 127–190

DOI: 10.21741/9781945291852-3

Google Scholar

[7] F. Roccaforte, F.Fiorenza, P.Vivona, M.; Greco, G.; Giannazzo, Selective Doping in Silicon Carbide Power Devices. Materials 2021, 14, 3923

DOI: 10.3390/ma14143923

Google Scholar

[8] L.M. Porter, R.F. Davis: Mater. Sci. Eng. B 34, 83 (1995)

Google Scholar

[9] J. Crofton, L.M. Porter, J.R. Williams: phys. stat. sol. (a) 202, 581 (1997)

Google Scholar

[10] M.J. Bozack: phys. stat. sol. (a) 202, 549 (1997)

Google Scholar

[11] S.W. King, R.J. Nemanich and R.F. Davis: J. Electrochem. Soc. 146, 2648 (1999)

Google Scholar

[12] L. Muehlhoff, W.J. Choike, M.J. Bozack, J.T. Yates, Jr.: J. Appl. Phys. 60,2842 (1986))

Google Scholar

[13] R.J. Trew: phys. stat. sol. (a) 162, 409 (1997)

Google Scholar