Evolution of the Electrical and Microstructural Properties of Mo/4H-SiC Contact with the Annealing Temperature

Article Preview

Abstract:

In this work, we investigated the electrical properties evolution of Mo/4H-SiC Schottky contacts following thermal annealing treatments at temperature up to 950 °C. The electrical characterization under forward and reverse bias revealed a reduction of the barrier height from 1.45 eV (as-deposited contact) to 1.30 eV (950°C-annealed contact), with the presence of inhomogeneity in the contact, while the leakage current followed a thermionic-field emission (TFE) model after annealing at 750 °C and presented a significant increase for the 950°C-annealed contact. The electrical characterization was associated with microstructural analyses, which highlighted an enlargement of the grains forming the structure of the Mo-film and the presence of voids near the Mo/4H-SiC interface. These observations can be at the base of the variation in the electrical behavior of the contact.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectron. Eng. 187–188 (2018) 66-77.

DOI: 10.1016/j.mee.2017.11.021

Google Scholar

[2] R. Yakimova, C. Hemmingsson, M.F. MacMillan, T. Yakimov, E. Janzén, Barrier Height Determination for n-Type 4H-SiC Schottky Contacts Made Using Various Metals, J. Electron. Mater. 27 (1998) 871-875.

DOI: 10.1007/s11664-998-0112-5

Google Scholar

[3] M. Vivona, G. Bellocchi, R. Lo Nigro, S. Rascunà, F. Roccaforte, Electrical evolution of W and WC Schottky contacts on 4H-SiC at different annealing temperatures, Semicond. Sci. Technol. 37 (2022) 015012 1-8.

DOI: 10.1088/1361-6641/ac3375

Google Scholar

[4] R. Rupp, R. Elpelt, R. Gerlach, R. Schomer, M.; Draghici, A new SiC diode with significantly reduced threshold voltage. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 28 May–1 June 2017; p.355–358.

DOI: 10.23919/ispsd.2017.7988991

Google Scholar

[5] A. B. Renz, V. A. Shah, O. J. Vavasour, Y. Bonyadi, F. Li, T. Dai, G. W. C. Baker, S. Hindmarsh, Y. Han, M. Walker, Y. Sharma, Y. Liu, B. Raghothamachar, M. Dudley, P. A. Mawby, P. M. Gammon, The improvement of Mo/4H-SiC Schottky diodes via a P2O5 surface passivation treatment, J. Appl. Phys. 127 (2020) 025704 1-9.

DOI: 10.1063/1.5133739

Google Scholar

[6] T. N. Oder and S. B. Nardella, Effects of deposition temperature on Mo/SiC Schottky contacts, AIP Advances 12 (2022) 025117 1-6.

DOI: 10.1063/5.0083977

Google Scholar

[7] T. Suzuki, H. Wakabayashi, K. Tsutsui, H. Iwai, K. Kakushima, Laminated Mo/C Electrodes for 4H-SiC Schottky Barrier Diodes with Ideal Interface Characteristics, IEEE Electron. Dev. Lett. 37 (2016) 618-620.

DOI: 10.1109/led.2016.2536738

Google Scholar

[8] Z.-Y Yang, Y. Wang, X. Li, J. Yang, D. Shi, F. Cao, Thermal stability of Mo–C alloy Schottky contacts on n-type 4H-SiC, Microelectron. Eng. 239 (2021) 111531 1-5.

DOI: 10.1016/j.mee.2021.111531

Google Scholar

[9] M Vivona, G Greco, F Giannazzo, R Lo Nigro, S Rascunà, M Saggio and F Roccaforte, Thermal stability of the current transport mechanisms in Ni-based Ohmic contacts on n- and p-implanted 4H-SiC, Semicond. Sci. Technol. 29 (2014) 075018 1-7.

DOI: 10.1088/0268-1242/29/7/075018

Google Scholar

[10] S. M. Sze, and K. N. Kwok, Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2007.

Google Scholar

[11] F. A. Padovani and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 9 (1966) 695–707.

DOI: 10.1016/0038-1101(66)90097-9

Google Scholar