Evolution of the Electrical and Microstructural Properties of Mo/4H-SiC Contact with the Annealing Temperature

Abstract:

In this work, we investigated the electrical properties evolution of Mo/4H-SiC Schottky contacts following thermal annealing treatments at temperature up to 950 °C. The electrical characterization under forward and reverse bias revealed a reduction of the barrier height from 1.45 eV (as-deposited contact) to 1.30 eV (950°C-annealed contact), with the presence of inhomogeneity in the contact, while the leakage current followed a thermionic-field emission (TFE) model after annealing at 750 °C and presented a significant increase for the 950°C-annealed contact. The electrical characterization was associated with microstructural analyses, which highlighted an enlargement of the grains forming the structure of the Mo-film and the presence of voids near the Mo/4H-SiC interface. These observations can be at the base of the variation in the electrical behavior of the contact.

You have full access to the following eBook
You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectron. Eng. 187–188 (2018) 66-77.

DOI: 10.1016/j.mee.2017.11.021

Google Scholar

[2] R. Yakimova, C. Hemmingsson, M.F. MacMillan, T. Yakimov, E. Janzén, Barrier Height Determination for n-Type 4H-SiC Schottky Contacts Made Using Various Metals, J. Electron. Mater. 27 (1998) 871-875.

DOI: 10.1007/s11664-998-0112-5

Google Scholar

[3] M. Vivona, G. Bellocchi, R. Lo Nigro, S. Rascunà, F. Roccaforte, Electrical evolution of W and WC Schottky contacts on 4H-SiC at different annealing temperatures, Semicond. Sci. Technol. 37 (2022) 015012 1-8.

DOI: 10.1088/1361-6641/ac3375

Google Scholar

[4] R. Rupp, R. Elpelt, R. Gerlach, R. Schomer, M.; Draghici, A new SiC diode with significantly reduced threshold voltage. In Proceedings of the 2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD), Sapporo, Japan, 28 May–1 June 2017; p.355–358.

DOI: 10.23919/ispsd.2017.7988991

Google Scholar

[5] A. B. Renz, V. A. Shah, O. J. Vavasour, Y. Bonyadi, F. Li, T. Dai, G. W. C. Baker, S. Hindmarsh, Y. Han, M. Walker, Y. Sharma, Y. Liu, B. Raghothamachar, M. Dudley, P. A. Mawby, P. M. Gammon, The improvement of Mo/4H-SiC Schottky diodes via a P2O5 surface passivation treatment, J. Appl. Phys. 127 (2020) 025704 1-9.

DOI: 10.1063/1.5133739

Google Scholar

[6] T. N. Oder and S. B. Nardella, Effects of deposition temperature on Mo/SiC Schottky contacts, AIP Advances 12 (2022) 025117 1-6.

DOI: 10.1063/5.0083977

Google Scholar

[7] T. Suzuki, H. Wakabayashi, K. Tsutsui, H. Iwai, K. Kakushima, Laminated Mo/C Electrodes for 4H-SiC Schottky Barrier Diodes with Ideal Interface Characteristics, IEEE Electron. Dev. Lett. 37 (2016) 618-620.

DOI: 10.1109/led.2016.2536738

Google Scholar

[8] Z.-Y Yang, Y. Wang, X. Li, J. Yang, D. Shi, F. Cao, Thermal stability of Mo–C alloy Schottky contacts on n-type 4H-SiC, Microelectron. Eng. 239 (2021) 111531 1-5.

DOI: 10.1016/j.mee.2021.111531

Google Scholar

[9] M Vivona, G Greco, F Giannazzo, R Lo Nigro, S Rascunà, M Saggio and F Roccaforte, Thermal stability of the current transport mechanisms in Ni-based Ohmic contacts on n- and p-implanted 4H-SiC, Semicond. Sci. Technol. 29 (2014) 075018 1-7.

DOI: 10.1088/0268-1242/29/7/075018

Google Scholar

[10] S. M. Sze, and K. N. Kwok, Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2007.

Google Scholar

[11] F. A. Padovani and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electron. 9 (1966) 695–707.

DOI: 10.1016/0038-1101(66)90097-9

Google Scholar