Impact of Silicon Nitride Stress on Defects Generation in 4H-SiC and the Effect of Sacrificial Oxidation on Defects Reduction

Article Preview

Abstract:

The impact of silicon nitride (Si₃N₄) stress on 4H-SiC has been investigated. Current-voltage (I-V) measurements on Schottky barrier diode show that Si₃N₄ films thicker than 100 nm degrade both the ideality factor and Schottky barrier height. A 45-nm sacrificial oxidation effectively reduces defects from a 100-nm-thick Si₃N₄ layer, but defects persist with films over 300 nm. Interface state density of metal oxide semiconductor capacitor with a 44-nm-thick gate oxide confirms the effectiveness of sacrificial oxidation in mitigating defects.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G.S. May and C.J. Spanos, Fundamentals of Semiconductor Manufacturing and Process Control, Hoboken, NJ: John Wiley & Sons (2006).

Google Scholar

[2] Xiao Hong, Introduction to Semiconductor Manufacturing Technology, Prentice Hall Inc., New Jersey, USA (2001).

Google Scholar

[3] M. Tamura and H. Sunami, Jpn. J. Appl. 8, 1097 (1972).

Google Scholar

[4] C. -L. Hung, B. -Y. Tsui, C.-P Shih, IEEE Transactions on Electron Devices, vol. 69, no. 10, pp.5742-5748 (2022).

Google Scholar

[5] B. -Y. Tsui, T. -K. Tsai, Y. -T. Lu, J. -H. Lin, C. -L. Hung and Y. -X. Wen, in IEEE Transactions on Electron Devices, vol. 68, no. 12, pp.6644-6647 (2021).

Google Scholar

[6] J. -C. Cheng and B. -Y. Tsui, in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp.3739-3745 (2018).

Google Scholar

[7] Lanni, L., Malm, B. G., Östling, M., & Zetterling, C. M. (2014). Materials Science Forum, vol. 778–780, Trans Tech Publications, Ltd., Feb. 2014, p.1005–1008.

DOI: 10.4028/www.scientific.net/msf.778-780.1005

Google Scholar

[8] K. Kawahara, M. Krieger, J. Suda, and T. Kimoto, Journal of Applied Physics, vol. 108, no. 2, p.023706 (2010).

Google Scholar

[9] T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications, John Wiley & Sons Singapore Pte. Ltd (2014).

DOI: 10.1002/9781118313534

Google Scholar

[10] T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner, and N. Nordell, Phys. Status Solidi A 162, 199 (1997).

DOI: 10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0

Google Scholar

[11] Thomas Dalibor, Gerhard Pensl, Tsunenobu Kimoto, Hiroyuki Matsunami, Shankar Sridhara, Robert P. Devaty, Wolfgang J. Choyke,Diamond and Related Materials,Volume 6, Issue 10 (1997).

DOI: 10.1016/s0925-9635(97)00108-8

Google Scholar

[12] Katsunori Danno, Tsunenobu Kimoto, J. Appl. Phys. 15 May 2007; 101 (10): 103704.

Google Scholar

[13] K. Agarwal, S. Seshadri and L. B. Rowland, in IEEE Electron Device Letters, vol. 18, no. 12, pp.592-594 (1997).

Google Scholar

[14] O. Aviñó-Salvadó, B. Asllani, C. Buttay, C. Raynaud and H. Morel, in IEEE Transactions on Electron Devices, vol. 67, no. 1, pp.63-68 (2020).

DOI: 10.1109/ted.2019.2955181

Google Scholar

[15] R. Waters and B. V. Zeghbroeck, Appl. Phys. Lett., vol. 76, no. 8, p.1039 (2000).

Google Scholar