Materials Science Forum Vols. 595-598

Paper Title Page

Abstract: MCrAlY coatings (where M = Co, Ni or Co/Ni) are widely used on turbine blades and vanes as oxidation and corrosion resistant overlays or as a bond-coating in thermal barrier coatings systems. MCrAlY are usually fabricated by Plasma Spraying, Physical Vapour Deposition, High Velocity Oxy-Fuel spraying or electrolytic techniques. The use of emergent Spark Plasma Sintering technique as a preparation method for NiCoCrAlYTa coatings has been presented previously [1]. SPS technique allows fast development of new coatings with a one-step fabrication of multilayered coatings. This work presents first results of the long term isothermal oxidation behaviour of Pt-Ni aluminide/NiCoCrAlYTa multi layered coatings. The obtained coating is dense and homogeneous. Isothermal oxidation up to 500 h at 1100°C leads to the formation of an adherent alumina scale with Y-rich precipitates and deep intergranular oxidation.
143
Abstract: The modeling equations used for spallation prediction are becoming increasingly more sophisticated due to the consideration of a wider range of thermal and thermo-mechanical loading conditions. Consequently, a software application would make such life time models more practical and may become a desired tool that both academic and applied researchers may want to use. As a starting point for further development a prototype software has been developed based on a simple phenomenological spallation analysis model. This software features a Windows based graphical user interface and works with other Windows applications, such as, Power Point, Excel or Origin. The software analyzes laboratory spallation life time data acquired from isothermal, thermal cyclic and/or burner rig testing and provides confidence limits and accuracy assessment of the analysis model. It further calculates the life time for a given bond coat temperature, temperature gradient across the coating, and thermal cycle frequency.
151
Abstract: A model using a finite elements code is developed to simulate degradation due to combined cyclic oxidation and interdiffusion in materials used in high temperature components of gas turbines. Coating recession due to cyclic oxidation (oxide growth and spalling) is also modelled using a statistical approach. Interdiffusion between coating and superallloy is modelled to predict total Al depletion in the coating. The phase transformations in the alumina-forming coating and the effects of the precipitates at the coating / superalloy interface are investigated. The results of simulations are compared with experimental data. Effects of diffusion parameters and of cyclic oxidation kinetics are discussed.
159
Abstract: When ash-forming oils or contaminated distillate oils are used as fuels in land-based, marine or aero gas turbines, the hot gas path components, mainly the partition vanes and the blades of the expansion turbine are subjected to the deposition of slags that are corrosive at high temperature due to their low liquidus temperature. This hot corrosion process - if not properly inhibited - entails a dramatic life reduction of the hot gas path parts. MgO is a traditional, efficient inhibitor. Recently, it has been found that NiO also suppresses the corrosiveness of the (Na,S,V) melts by trapping vanadium in a refractory vanadate (Ni3V2O8); this compound is friable and does not tend to accumulate on turbine blades. The use of inhibitors entails losses in both machine performance and availability. Moreover, other metals can interfere with the inhibition process. In particular, zinc and iron are often inadvertently introduced in gas turbines fuels during their transportation or storage and they can significantly interact with nickel. This paper distinguishes the interactions between NiO on one hand and both ZnO and Fe2O3 on the other hand in the general complex chemistry of ash. The thermochemical study of (Na,S,V) melts in presence of Ni confirms that nickel is a good "trapper" of vanadium oxide at high temperature. However, they also show that nickel can react with iron to form the very stable ferrite NiFe2O4 and a low melting point vanadate phase. On the contrary, the presence of zinc affects to a lesser extent the reactivity of NiO versus V2O5 despite the formation of Ni1-xZnxO solid solutions.
169
Abstract: Thermal barrier coatings used in airplane engines or land-based gas turbines can show catastrophic failure (i. e. spallation) typically during cooldown due to thermal expansion mismatch stresses. However, it is also often noted that spallation occurs minutes, hours, or even days after the sample is cold. This type of delayed failure, called “desk top spallation” is, up to now, not fully understood and therefore a field of great interest. Because desk top failure occurs in ambient air, the working hypothesis is that water vapor from the office environment plays a role. Consequently, a number of experiments have been designed to verify this hypothesis. The experiments include more traditional approaches like acoustic emission measurements during cyclic oxidation, but also innovative new approaches like acoustic emission during water drop testing, and hydrogen detection at the interface to the thermally grown oxide using ion beam techniques.
177
Abstract: The diffusion aluminide coatings are widely used in the air-cooling passages to protect their surfaces against high temperature corrosion. In this study plain and Si-modified aluminide coatings were applied by slurry technique on internal surfaces of Ni-base GTD-111 superalloy cylindrical specimens derived from a gas turbine air-cooled blade. The slurries containing Al or Al plus Si powders were applied on internal surfaces by injection method. Then, the samples were heated to high temperature (800-1000°C) to form the coatings. Optical, SEM-EDS, and XRD were utilized for characterizing microstructures and phase compositions of the coatings. The thicknesses of applied coatings on internal surfaces were in the range of 30-50 μm that meets specifications for diffusion coatings in such application (i.e. 25-756m). The examinations demonstrated that both coating types were contained β-NiAl phase as the matrix. The uniformities of coatings applied on different surface positions of passageway were determined. In addition, the effects of time and temperature of coating process as well as mass of dried slurry on the coating thickness were also discussed.
185
Abstract: Alumina scale adhesion on high temperature alloys is known to be affected primarily by sulfur segregation and reactive element additions. However adherent scales can become partially compromised by excessive strain energy and cyclic cracking. With time, exposure of such scales to moisture can lead to spontaneous interfacial decohesion, occurring while the samples are maintained at ambient conditions. Examples of this Moisture-Induced Delayed Spallation (MIDS) are presented for NiCrAl and single crystal superalloys, becoming more severe with sulfur level and cyclic exposure conditions. Similarly, delayed failure or Desk Top Spallation (DTS) results are reviewed for TBC’s, culminating in the water drop failure test. Both phenomena are discussed in terms of moisture effects on bulk alumina and bulk aluminides. A mechanism is proposed based on hydrogen embrittlement and is supported by a cathodic hydrogen charging experiment. Hydroxylization of aluminum from the alloy interface appears to be the relevant basic reaction.
191
Abstract: Evolution of interdiffusion microstructures was examined in ternary Ni-Cr-Al solid-tosolid diffusion couples using two-dimensional (2D) phase field simulation. Utilizing Cahn-Hilliard and Allen-Cahn equations, multiphase diffusion couples containing of fcc-γ and B2-β solid solution phases were simulated with alloys of different compositions and phase contents. Chemical mobility as a function of composition with constant gradient energy coefficients was used in the simulation. Simulated microstructures in γ+β/γ and γ+β/γ+β diffusion couples were compared with the experimental microstructures reported in literature. As observed experimentally, the model predicted the recession of γ+β region in the γ+β/γ couple and a stationary interface in γ+β/γ+β couple. Concentration profiles developed across the diffusion couples demonstrated that the interdiffusion occurs in the γ phase as well as in the γ+β region. Formation of single-phase γ and β layers near the interface of γ+β/γ+β couples was also investigated using the volume fraction profile obtained from the simulated microstructure.
199
Abstract: In advanced gas turbine engines that operate in a dust-laden environment causing ingestion of siliceous debris into engines, thermal barrier coatings (TBCs) are highly susceptible to degradation by molten CMAS (calcium-magnesium alumino silicate) deposits. In this study, the degradation mechanisms other than the commonly reported thermomechanical damage are investigated with an emphasis on the thermochemical aspects of molten CMAS induced degradation of TBCs. Free-standing yttria stabilized zirconia (8YSZ) TBC specimens in contact with a model CMAS composition were subjected to isothermal heat treatment in air at temperatures ranging from 1200°C to 1350°C. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Starting at 1250°C, the molten CMAS readily infiltrated and dissolved the YSZ coating followed by reprecipitation of zirconia with a different morphology and composition that depends on the local melt chemistry. Significant amount of Y2O3 depleted monoclinic ZrO2 phase evolved from CMAS melt that dissolved ť-ZrO2 was evident. Thus the mechanism of dissolution and reprecipitation due to molten CMAS damage resulted in destabilization of the YSZ with disruptive phase transformation (t’  f + m).
207
Abstract: During service, TBC can suffer degradation by CMAS, FOD, erosion or spallation. Whereas the first three are due to foreign particles, the last one is related to thermal cycling. When subjected to high temperature exposures followed by rapid coolings under oxidizing conditions, a TBC system undergoes morphological changes and stress development. This will initiate cracks which propagate and finally lead to failure by spallation. Consequently, the aim of the present study is to understand better the mechanisms responsible for such spallation events. Two kinds of TBC systems with different bond coatings (NiCoCrAlYTa or Pt-modified nickel aluminide bond coatings) are thermally cycled. Subsequently, SEM investigations on TBC systems after spallation concentrate on failure path, defect, morphological and microstructural changes to propose way for improving TBC system lifetime.
213

Showing 21 to 30 of 134 Paper Titles