Characterization of Dislocations and Micropipes in 4H n+ SiC Substrates

Abstract:

Article Preview

Etching of 4H-SiC wafers in molten KOH as a method for micropipe and dislocation density analysis was investigated. The obtained results were correlated with those of the synchrotron white beam x-ray topography. Heavily nitrogen-doped SiC shows a significantly different etching behavior in comparison with the low-doped material. This complicates identification of different types of threading defects. In particular, it is difficult to separate Threading Screw Dislocations (TSD) from Threading Edge Dislocations (TED). Depending on the level of doping and thermal history of the crystal, some of the etch pits emerging due to the 1c screw dislocations can be as large as those due to the micropipes.

Info:

Periodical:

Materials Science Forum (Volumes 600-603)

Edited by:

Akira Suzuki, Hajime Okumura, Tsunenobu Kimoto, Takashi Fuyuki, Kenji Fukuda and Shin-ichi Nishizawa

Pages:

333-336

DOI:

10.4028/www.scientific.net/MSF.600-603.333

Citation:

P. Wu et al., "Characterization of Dislocations and Micropipes in 4H n+ SiC Substrates", Materials Science Forum, Vols. 600-603, pp. 333-336, 2009

Online since:

September 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.