Simulation Study for HTCVD of SiC Using First-Principles Calculation and Thermo-Fluid Analysis

Abstract:

Article Preview

A simulation study for high temperature chemical vapor deposition (HTCVD) of silicon carbide (SiC) is presented. Thermodynamic properties of the species were derived from the first-principles calculations in order to evaluate the activation energy (Ea) in the gas phase reaction. Pathways producing SiC2 and Si2C from SiCl4-C3H8-H2 system were proposed to investigate the effect of chlorinated species on HTCVD. A thermo-fluid analysis was carried out to estimate the partial pressures of the species. It was found that the main sublimed species of Si, SiC2, Si2C decreased in the SiCl4-C3H8-H2 system compared to the SiH4-C3H8-H2 system. This suggests that the growth rate would decrease in the atmosphere of chlorinated species at around 2500°C.

Info:

Periodical:

Materials Science Forum (Volumes 600-603)

Edited by:

Akira Suzuki, Hajime Okumura, Tsunenobu Kimoto, Takashi Fuyuki, Kenji Fukuda and Shin-ichi Nishizawa

Pages:

47-50

DOI:

10.4028/www.scientific.net/MSF.600-603.47

Citation:

Y. Kito et al., "Simulation Study for HTCVD of SiC Using First-Principles Calculation and Thermo-Fluid Analysis", Materials Science Forum, Vols. 600-603, pp. 47-50, 2009

Online since:

September 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.