High Channel Mobility of MOSFET Fabricated on 4H-SiC (11-20) Face Using Wet Annealing

Abstract:

Article Preview

We studied the annealing process to improve the field-effect channel mobility (μFE) on the 4H-SiC (11-20) face. We found that wet annealing, in which a wet atmosphere was maintained during the cooling-down period to 600°C after wet oxidation, was effective. The interface states (Dit) near the conduction band edge decreased and the μFE increased up to 244 cm2/Vs. Furthermore, the origin of this high channel mobility was investigated using secondary ion mass spectroscopy (SIMS) measurement and thermal desorption spectroscopy (TDS) analysis. It was indicated that the hydrogen density at the MOS interface was increased by the wet annealing and the hydrogen was desorbed mainly at temperatures between 800 °C and 900 °C. These hydrogen desorption temperatures also corresponded to the temperatures of the μFE reduction by argon annealing after the wet annealing. These results indicated that this high channel mobility was achieved by hydrogen passivation during the wet annealing at temperatures between 800 °C and 900 °C.

Info:

Periodical:

Materials Science Forum (Volumes 600-603)

Edited by:

Akira Suzuki, Hajime Okumura, Tsunenobu Kimoto, Takashi Fuyuki, Kenji Fukuda and Shin-ichi Nishizawa

Pages:

691-694

DOI:

10.4028/www.scientific.net/MSF.600-603.691

Citation:

T. Endo et al., "High Channel Mobility of MOSFET Fabricated on 4H-SiC (11-20) Face Using Wet Annealing ", Materials Science Forum, Vols. 600-603, pp. 691-694, 2009

Online since:

September 2008

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.