Extended Study of the Step-Bunching Mechanism during the Homoepitaxial Growth of SiC

Article Preview

Abstract:

We discuss the possible source of surface instabilities (with specific reference to the step bunching phenomena) during the growth of cubic and hexagonal Silicon Carbide polytypes. For this analysis we use: results from super-lattice Kinetic Monte Carlo simulations, atomic force microscope surface analysis and literature data. We show that only hexagonal polytypes with misorientation cut toward the <11-20> direction suffer “intrinsically” the step bunching phenomena (i.e. it are present, independently on the growth conditions) whereas cubic polytypes and hexagonal ones with misorientation cut toward the <10-10> direction do not.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 615-617)

Pages:

117-120

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: