Materials Science Forum
Vols. 663-665
Vols. 663-665
Materials Science Forum
Vol. 662
Vol. 662
Materials Science Forum
Vols. 660-661
Vols. 660-661
Materials Science Forum
Vol. 659
Vol. 659
Materials Science Forum
Vol. 658
Vol. 658
Materials Science Forum
Vol. 657
Vol. 657
Materials Science Forum
Vols. 654-656
Vols. 654-656
Materials Science Forum
Vol. 653
Vol. 653
Materials Science Forum
Vol. 652
Vol. 652
Materials Science Forum
Vol. 651
Vol. 651
Materials Science Forum
Vol. 650
Vol. 650
Materials Science Forum
Vol. 649
Vol. 649
Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum Vols. 654-656
Paper Title Page
Abstract: In the present work, the formation of an aluminide coating prior to Hot Press Forming (HPF) was investigated. It was found that the formation of Fe3Al phases could suppress coating degradation during the HPF process. This new method was studied as a way to simultaneously improve the coating ductility and achieve a good hot corrosion resistance. In this new method, the conventional type1 aluminized coating was transformed into an aluminide coating. This aluminide coating protects the steel from high temperature oxidation and enables its plastic deformation at high temperature. The effect of this new solution on the mechanical properties of HPF steel is reviewed in detail.
326
Abstract: Hot stamping is an attractive method to produce extra high strength automotive components. In the conventional hot stamping, the furnace heating is employed and the heating rate is quite low. To improve the productivity of the hot stamping technology, the reduction of time for the heating process is required. In this study, the influence of the heating rate in a range up to 200°C/s, heating temperatures between 650°C and 950°C and cooling condition on microstructure and mechanical properties of 0.22% C -3%Mn steel has been investigated. The steel is a promising material for the highly productive new hot stamping technology because this steel transformed into martensite from austenite even at cooling in free air. The specimens heat-treated at a high heating rate and for short holding time at the heating temperature just above Ac3 show significantly fine martensite microstructure and a good strength-toughness balance. In this paper, the α→ γ transformation behavior and the γ→ α transformation behavior after inter-critical annealing are discussed to explain the evolution of the microstructures and mechanical properties.
330
Abstract: SUS 304 austenitic stainless steel was subjected to severe plastic deformation (SPD) by the method of high pressure torsion (HPT). From a fully austenitic matrix (γ), HPT resulted in phase transformation to give a two phase structure of austenite (γ) and martensite (α') by the transformation γα'. The phase transformation was accompanied by an increase in hardness (Hv) from 1.6 GPa in the as annealed form to 5.4 GPa in the deformed state. Subsequent annealing in temperature range 250oC to 450oC resulted in an increase in both α' volume fraction and hardness (6.4 GPa). Annealing at 600oC resulted in a decrease in α' volume fraction hardness.
334
Abstract: In this paper, the torsional texture evolution of pearlitic steel wire is simulated by Full Constrains (FC) Taylor model. The simulation results indicate that a simple shear deformation can not explain the experiments results of torsion texture. Bring in additional rigid body rotation and rational shear deformation can emersion the torsion texture very well. The different deformation styles are imposed to the FC Taylor, a group of parameters is given to explain the torsion texture evolution.
338
Abstract: Characteristics of slide-bend forming were investigated. In this process, foil specimens can be bent to various shaped products by indenting and sliding a tool. The effects of the tool indentation load, the foil thickness and the number of slide repetition on the bending angle were examined experimentally for three kinds of foil materials. In addition, the deformation of bent region was examined using a rigid-plastic finite element analysis. Bending angle increased with increasing the indentation load or decreasing the foil thickness. When the number of slide repetition increased, the bending angle increased slightly. The slide repetition can be effective for adjusting bending angle slightly. By sliding a thin edge-shaped tool relative to the foil specimen, bending angle and radius of curvature of specimens can be controlled freely.
342
Abstract: Advanced high strength steels (AHSS) are increasingly used in sheet metal stamping in the automotive industry. In comparison with conventional steels, advanced high strength steel (AHSS) stampings produce higher contact pressures at the interface between draw die and sheet metal blank, resulting in more severe wear conditions, particularly at the draw die radius. The prediction of tool wear patterns for sheet metal stamping die is a highly challenging task as there are many control parameters involved in the production. This paper presents a numerical simulation methodology to analyse the influences of various control parameters on tool wear patterns of a sheet metal stamping die with different die radius arc profiles. The results of tool wear patterns provide informative guidelines for on-site production.
346
Abstract: In a welded structure, thick plates are joined by multi-pass welding in the butt joint. During the first pass of multi-pass welding, burn-through, lack of fusion, and incomplete penetration were readily found as weld defects. Accordingly, the backing condition should be carefully selected in welding of a thick plate, because improper backing conditions lead to weld defects. In the job site, a steel backing strip is usually adopted, although it reduces the fatigue strength. No backing conditions or removable backing is recommended to increase the fatigue strength, but selection of the proper backing and welding conditions is complicated. In this study, several backing methods, such as ceramic backing, water-cooled copper backing, and even the use of no backing, were investigated during GMA (Gas Metal Arc) welding of a thick steel plate. The gas metal arc welding conditions were established for each backing method, and the bead shape and mechanical properties were examined after welding.
350
Abstract: Weldability of ultra low carbon and nitrogen, low chromium ferrite stainless steel is analysed by using Thermol-cal software and welding metallurgy. Eembrittlement of welding joint is the failure reason during application of ultra low carbon and nitrogen 12% chromium FSS. Comparing welding joint performance of different welding process, Gas Metal Arc Weldinng with high toughness welding material and proper welding heat input is economical and feasible welding process. Controlling growth of ferrite grain is the key to improve toughness of the heat affected zone (HAZ). Presence of titanium carbides or nitrides and the amount of martensite located along ferrite grain intergranular boundaties are very important for toughness of HAZ in low chromium FSS. It was found that the best size of Ti(C/N) grain is 2-5μm and content of martensite is 40%.
354
Abstract: The relationship between the oxide inclusions and the Heat-affected-zone (HAZ) toughness of microalloying steels has been investigated. The low carbon steels are smelted with special oxide introduction technique and the properties of HAZ has been studied with thermo-simulation. The optical microscope and SEM were used to analyze the size, composition and distribution of the inclusions, the mechanical properties after thermo-simulation was also analyzed. The results show that the inclusions in steel are mainly Ti and Al oxide with MnS, these complex inclusions are well distributed and the size is less than 3 micron. Microstructure of HAZ consists of intragranular acicular ferrite (IAF), intergranular ferrite and small amount of lath bainite while the cooling time during the phase formation is short. After the thermo simulation with the cooling time between 800°C and 500°C (t8/5) increasing the toughness of HAZ decreased and the size of prior austenite grain increased. Inclusions which located near the prior austenite grain boundary couldn’t induce the nucleation of IAF, only the ones inside the prior austenite grain can promote IAF’s growth.
358
Abstract: High-strength steels are used in several critical aerospace applications such as aircraft landing gear, primary structure and engine components. These steels, such as the AISI 4340 assessed here exhibit small critical crack sizes, and when they suffer in-service damage from impact or corrosion, repairing the damage is particularly challenging. One potential repair method is using laser assisted metal deposition (LAMD or ‘laser cladding’ LC), to rebuild the damaged region or the grinding depression remaining after the damage has been removed. The critical situations where these materials are used makes it essential that repairs do not introduce any degradation, such as microcracking, that could lead to failure in service. In this trial, 420 grade stainless steel cladding powder was used to produce a clad layer with both high strength and good corrosion resistance. The cladding was performed under various powder mass flow rates, traverse speeds, and laser powers. The clad thickness and the depth of the fusion zone varied, as expected, with all the cladding conditions. It was found that there was very little porosity, and importantly, no evidence of microcracking under any cladding condition. There were some small defects near the clad boundary, apparently associated with each clad pass. The absence of microcracking is a promising result, and the research will be continued to assess the effect of microstructure and defects on performance of the repaired plates.
362