Synchrotron Radiation Photoelectron Spectroscopy Study of Thermally Grown Oxides on 4H-SiC(0001) Si-Face and (000-1) C-Face Substrates

Article Preview

Abstract:

The fundamental aspects of thermal oxidation and oxide interface grown on 4H-SiC(0001) Si-face and (000-1) C-face substrates were investigated by means of high-resolution x-ray photoelectron spectroscopy (XPS) using synchrotron radiation together with electrical measurements of SiC-MOS capacitors. We found that, for both cases, there existed no distinct C-rich transition layer despite the literature. In contrast, atomic scale roughness causing degradation of SiC-MOS devices, such as negative fixed charge and electrical defects just at the oxide interface, was found to be introduced as thermal oxidation progressed, especially for the (000-1) C-face substrate.

You might also be interested in these eBooks

Info:

[1] for example; A. Agarwal, S.-H. Ryu, J. Palmour, W. J. Choyke, H. Matsunami and G. Pensl: Silicon Carbide-Recent Major Advances (Springer, Berlin, 2004)

DOI: 10.1007/978-3-642-18870-1

Google Scholar

[2] for example; T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano and H. Matsunami: Jpn. J. Appl. Phys. Vol. 44 (2005), p.1213

Google Scholar

[3] J. M. Gibson and M. Y. Lanzerotti: Nature Vol. 340 (1989), p.128

Google Scholar

[4] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi and J. A. Yarmoff: Phys. Rev. B Vol. 38 (1988), p.6084

Google Scholar

[5] K. Ohishi and T. Hattori: Jpn. J. Appl. Phys. Vol. 33 (1994), p. L675

Google Scholar

[6] H. Watanabe, K. Kato, T. Uda, K. Fujita, M. Ichikawa, T. Kawamura and K. Terakura: Phys. Rev. Lett. Vol. 80 (1998), p.345

DOI: 10.1103/physrevlett.80.345

Google Scholar

[7] K. C. Chang, N. T. Nuhfer, L. M. Porter and Q. Wahab: Appl. Phys. Lett. Vol. 77 (2000), p.2186

Google Scholar

[8] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin and M. Das: Appl. Phys. Lett. Vol. 93 (2008), p.022108

Google Scholar

[9] T. L. Biggerstaff, C. L. Reynolds, Jr., T. Zheleva, A. Lelis, D. Habersat, S. Haney, S.-H. Ryu, A. Agarwal and G. Duscher: Appl. Phys. Lett. Vol. 95 (2009), p.032108

DOI: 10.1063/1.3144272

Google Scholar

[10] X. Zhu, H. D. Lee, T. Feng, A. C. Ahyi, D. Mastrogiovanni, A. Wan, E. Garfunkel, J. R. Williams, T. Gustafsson and L. C. Feldman: Appl. Phys. Lett. Vol. 97 (2010), p.071908

DOI: 10.1063/1.3481672

Google Scholar

[11] C. Radtke, I. J. R. Baumvol, J. Morais and F. C. Stedile: Appl. Phys. Lett. Vol. 78 (2001), p.3601

Google Scholar

[12] C. Virojanadara and L.I. Johansson: Phys. Rev. B Vol. 71 (2005), p.195335

Google Scholar

[13] H. Watanabe, T. Hosoi, T. Kirino, Y. Kagei, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka and T. Shimura: Appl. Phys. Lett. Vol. 99 (2011), p.021907

DOI: 10.1063/1.3610487

Google Scholar

[14] H. Watanabe, T. Hosoi, T. Kirino, Y. Uenishi, A. Chanthaphan, D. Ikeguchi, A. Yoshigoe, Y. Teraoka, S. Mitani, Y. Nakano, T. Nakamura and T. Shimura: ECS Transactions Vol. 41 (3) (2011), p.77

DOI: 10.1149/1.3633023

Google Scholar

[15] Y. Teraoka and A. Yoshigoe: Appl. Surf. Sci. Vol. 169-170 (2001), p.738

Google Scholar

[16] S. M. Sze: Physics of Semiconductor Devices (Wiley, New York, 1981) 2nd ed.

Google Scholar

[17] H. Watanabe, H. Ohmi, H. Kakiuchi, T. Hosoi, T. Shimura and K. Yasutake: J. Nanosci. Nanotechnol. Vol. 11 (2011), p.2802

Google Scholar

[18] S. Dhar, L.C. Feldman, S. Wang, T. Isaacs-Smith and J.R. Williams: J. Appl. Phys. Vol. 98 (2005), p.014902

Google Scholar

[19] F. Devynck and A. Pasquarello: Physica B Vol. 401-402 (2007), p.556

Google Scholar

[20] T. Hosoi, Y. Kagei, T. Kirino, Y. Watanabe, K. Kozono, S. Mitani, Y. Nakano, T. Nakamura and H. Watanabe: Mater. Sci. Forum Vol. 645-648 (2010), p.991

DOI: 10.4028/www.scientific.net/msf.645-648.991

Google Scholar

[21] H. Watanabe, T. Kirino, Y. Uenishi, A. Chanthaphan, A. Yoshigoe, Y. Teraoka, S. Mitani, Y. Nakano, T. Nakamura, T. Hosoi and T. Shimura: ECS Transactions Vol. 35 (2) (2011), p.265

DOI: 10.1149/1.3568869

Google Scholar