Materials Science Forum Vols. 740-742

Paper Title Page

Abstract: This paper investigated a feasible process of growing epitaxial graphene on 4H hexagonal poly-type of silicon carbide Si-faced polar surface (0001) under an argon pressure of 900 mbar conditions. Using Raman Spectroscopy, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy, epitaxial graphene grown at temperature 1600°C is confirmed to take shape weakly on 4H-SiC (0001) with an average domain size of several tens of nanometers, and this can be seen as the characteristic of initial formation of epitaxial graphene on substrate.
125
Abstract: Abstract. The aim of this study is to compare DC characteristics of ‘as-grown’ and hydrogen (H)-intercalated epitaxial graphenes on SiC substrates [1,2]. Epitaxial graphene is grown on SiC at 1400-1600C, and H-intercalation is performed via in-situ introduction of Hydrogen during the graphitization process [6]. The fabrication processing steps used to define test structures are identical for the two materials. Results on the DC behaviour and uniformity issues with respect to both materials are reported. As-grown material behaves as a linear resistance, while H-intercalated demonstrates a non-linear characteristic. Hysteresis effects and time dependent behaviors are also observed in both materials. Extensive Hall measurements are performed on both materials with the aim of providing a qualitative understanding of material uniformity in both epi-graphenes.
129
Abstract: 3D–SiC/graphene structures were fabricated on the basis of SiC wafers by first producing micro–porous material by anodization, and then using two–step annealing to modify the porous matrix and cover it with a 2D carbon coating. Topological features of the obtained structures extend from macro– down to nano–scale. It is expected that such topology in combination with high resistance to corrosion, and bio–compatibility of both SiC and nano–carbon will make the 3D–SiC/graphene structures prospective for tissue–inducing matrixes.
133
Abstract: Transport properties of multigraphene layers on 6H-SiC substrates was studied. It was found that the curves of magnetoresistance and Shubnikov- de Haas oscillations shown the features, typical for single-layred graphene. The low temperature resistance demonstrated an increase with temperature increase, which also corresponds to a behavior typical for single-layered graphene (antilocalization). However at higher temperatures the resistance decreased with an increase of temperature, which corresponds to a weak localization. We believe that the observed behavior can be explained by a parallel combination of contributions to the conductivity of single-layered graphene and of multigraphene.
137
Abstract: The simple model for the one-layer graphene energy gaps induced by the substrate energy gap is pro-posed.
141
Abstract: The electrical characteristics of oxygen functionalized epitaxial graphene and Ti/Au metal contact interfaces were systematically investigated as a function of temperature. As the temperature was increased from 300 K to 673 K, the contact resistance and the sheet resistance decreased by 75% and 33%, respectively. The resistance of oxygen functionalized graphene vs temperature exhibited Arrhenius type behavior with activation energy of 38 meV. The results showed no hysteresis effects in resistance measurements over the temperatures studied here, suggesting the contact interfaces remain stable at high temperatures.
145
Abstract: Silicon nitride (SiN) was deposited by plasma enhanced chemical vapor deposition (PECVD) as a top gate dielectric on epitaxial graphene on 6H-SiC(0001). We compare x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transport measurements which were performed before and after the SiN deposition. We demonstrate that closed layers of SiN are formed without the need for surface activation and that the plasma process leads only to a minor degradation of the graphene. The SiN layer induces strong n-type doping. For a limited gate voltage range, a small hysteresis of 0.2 V is observed in top-gated field effect devices.
149
Abstract: Large variations have been observed in the uniformity and carrier concentration of epitaxial graphene grown on SiC by sublimation for samples grown under identical conditions and on nominally on-axis hexagonal SiC (0001) substrates. We have previously shown that these issues are both related to the morphology of the graphene-SiC surface after sublimation growth. Here we present a study on how the substrate polytype, substrate surface morphology and surface restructuring during sublimation growth affect the uniformity and carrier concentration in epitaxial graphene on SiC. These issues were investigated employing surface morphology mapping by atomic force microscopy coupled with local surface potential mapping using Scanning Kelvin probe microscopy.
153
Abstract: The evolution of SiC surface morphology during graphene growth process has been studied through the comparison of substrate surface step structure after in-situ etching and graphene growth in vacuum. Influence of in-situ substrate surface preparation on the properties of graphene was studied through the comparison of graphene layers on etched and un-etched substrates grown under same conditions.
157
Abstract: The formation mechanism of a carbonized layer was investigated under low-pressure and low-temperature process conditions. The initial carbonized layer under those conditions was formed epitaxially using the silicon atoms sublimated from substrate and the carbon atoms of the gas source. This result is suggested from the consideration of pit formation mechanism at the Si/SiC interface. After the initial layer was formed, the carbonized layer grew by the diffusion process of the carbon atoms through the crystal defects in the initially formed layer. This is suggested from that the thickness of the carbonized layer increases linearly with the square root of the process time. The growth rate seemed to be determined by the concentration of carbon atoms taken into the SiC.
161

Showing 31 to 40 of 269 Paper Titles