Optical and Electrical Simulations of Solar Cell Based on Silicon and Silicon Carbide

Article Preview

Abstract:

Among the different ways to improve the performances of light harvesting inside solar cells, multilayer configuration can be used. The bandgap of each single layer will contribute to absorption in a well defined wave-lengths range, enhancing the overall performances. Here, we investigate such performances in the case of solar cells made by two layers: a silicon one, and a SiC-based layer, and show the increasing of electrical working by means of computer simulations. These simulations are based on Finite Difference Time Domain (FDTD) for the optical calculations, on one side, and the Finite Element Method (FEM) for the electrical ones, on the other. The main goal is to show the enhancement of the electrical performances in heterostructure solar cells. In this paper, we investigate the influence of each different structure on the optical and electrical response. Our results show the influence of the device structures, in particular, the enhancement of the UV-ligth absorption inside the solar cell. Moreover, the difference structures allow us to show an improvement in the harvesting charge carrier by the heterojunction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

1050-1053

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, Appl. Phys. Lett. 62, 2941–2943(1993).

DOI: 10.1063/1.109628

Google Scholar

[2] J. Gee, in Twenty-Ninth IEEE Photovolt. Spec. Conf., p.150–153 (2002).

Google Scholar

[3] C. Eisele, C. Nebel, and M. Stutzmann, J. Appl. Phys. 89, 7722–7726 (2001).

Google Scholar

[4] W. Vervisch, G. Rivière, S. Vedraine, S. Biondo, Ph. Torchio, D. Duché, J.J. Simon and L. Escoubas, J. Appl. Phys. 111, 094506 (2012).

DOI: 10.1063/1.4712292

Google Scholar

[5] S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, Appl. Phys. Lett. 88, 161, 102 (2006).

Google Scholar

[6] A. Tavlove, Computational Electrodynamics (Arthech House, Norwood, MA, 1995).

Google Scholar

[7] S. Biondo, W. Vervisch, L. Ottaviani, O. Palais, J. Appl. Phys. 111, issue 2, 024506 (2012).

Google Scholar

[8] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam Appl. Phys. Lett. 90, issue 18, 183516 (2007).

DOI: 10.1063/1.2734507

Google Scholar