Novel Gate Oxide Process for Realization of High Threshold Voltage in 4H-SiC MOSFET

Article Preview

Abstract:

We found that threshold voltage (Vth) of a 4H-SiC MOSFET increases drastically by performing low temperature wet oxidation after nitridation in a gate oxide process. The increment of Vth depends on the wet oxidation conditions. Wet oxidation increases the interface trap density (Dit) at deep level of SiC bandgap and decreases positive charge density inside the gate oxide layer. The amount change of the interface traps and the positive charges in the gate oxide makes Vth higher without a decrease in the channel mobility. We improved the trade-off between Vth and effective carrier mobility (μeff) in the MOSFET channel, and realized a low specific on-resistance (Ron,sp) SiC-MOSFET with Vth over 5 V by using the newly developed process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 778-780)

Pages:

985-988

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Fujihira, Y. Tarui, M. Imaizumi, K. Ohtsuka, T. Takami, T. Shiramizu, K. Kawase, J. Tanimura, T. Ozeki, Characteristics of 4H-SiC MOS interface annealed in N2O, Solid-State Electronics 49 (2005) 896-901.

DOI: 10.1016/j.sse.2004.10.016

Google Scholar

[2] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, R. A. Weller, S. T. Pantelides, L. C. Feldman, O. W. Holland, M. K. Das, and J. W. Palmour, Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide, IEEE Electron Device Lett. 22 (2001).

DOI: 10.1109/55.915604

Google Scholar

[3] D. Okamoto, H. Yano, K. Hirata, T. Hatakeyama, and T. Fuyuki, Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide, IEEE Electron Devic Lett., 31 (2010) 710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[4] M. Okamoto, Y. Makifuchi, M. Iijima, Y. Sakai, N. Iwamuro, H. Kimura, K. Fukuda, and H. Okumura, Coexistence of Small Threshold Voltage Instability and High Channel Mobility in 4H-SiC(000-1) Metal-Oxide-Semiconductor Field-Effect Transistors, Appl. Phys. Express 5 (2012).

DOI: 10.1143/apex.5.041302

Google Scholar

[5] A. Agarwal, A. Burk, R. Callanan, C. Capell, M. Das, S. Haney, B. Hull, C. Jonas, M. O' Loughlin, M. O' Neil, J. Palmour, A. Powell, J. Richmond, S. H. Ryu, R. Stahlbush, J. Sumakeris and J. Zhang, Critical Technical Issues in High Voltage SiC Power Devices, Mater. Sci. Forum 600-603 (2009).

DOI: 10.4028/www.scientific.net/msf.600-603.895

Google Scholar

[6] S. Potbhare, N. Goldsman, and G. Pennington, A. Lelis, J. M. McGarrity, Numerical and experimental characterization of 4H-silicon carbide lateral metal-oxide-semiconductor field-effect transistor, J. Appl. Phys. 100 (2006) 044515-1-044515-8.

DOI: 10.1063/1.2335967

Google Scholar