Materials Science Forum
Vol. 832
Vol. 832
Materials Science Forum
Vols. 830-831
Vols. 830-831
Materials Science Forum
Vols. 828-829
Vols. 828-829
Materials Science Forum
Vol. 827
Vol. 827
Materials Science Forum
Vols. 825-826
Vols. 825-826
Materials Science Forum
Vol. 824
Vol. 824
Materials Science Forum
Vols. 821-823
Vols. 821-823
Materials Science Forum
Vol. 820
Vol. 820
Materials Science Forum
Vol. 819
Vol. 819
Materials Science Forum
Vol. 818
Vol. 818
Materials Science Forum
Vol. 817
Vol. 817
Materials Science Forum
Vol. 816
Vol. 816
Materials Science Forum
Vol. 815
Vol. 815
Materials Science Forum Vols. 821-823
Paper Title Page
Abstract: The critical electric field (Ecr) of the gate oxide in 4H-Silicon Carbide (SiC) MOSFETs was measured under inversion bias conditions with ion irradiation. The Linear Energy Transfer (LET) dependence of the Ecr at which the gate oxide breakdown occurred in these MOSFETs was evaluated. The linear relationship between the Ecr-1 and LET was observed for SiC MOSFETs. The slope of the LET-1/Ecr for SiC MOSFETs is almost the same that of the LET-1/Ecr lines for SiC MOS capacitors. The Vds dependence of Ecr was also evaluated. The correlation between the direction of electric field of drain-source region and direction of ion incidence affects to instability of Ecr.
673
Abstract: The stability of the threshold voltage of commercial SiC MOSFETs from two device manufactures has been evaluated and compared when subject to positive and negative bias-temperature-stress conditions. For both device groupings, the worse-case stress occurred under negative bias temperature conditions with VGS = –15 V and a stress temperature of 200 °C. Devices in the Vendor A grouping exhibited acceleration in their bias-temperature-stress response that occurred earlier in time as a strong function of stress-temperature and to a lesser degree on gate-bias magnitude. Devices in the Vendor B grouping showed some evidence of acceleration, but only for the worse-case stress condition. Threshold voltage shifts for this device group were very low and extremely stable, with recorded values below 0.4 V for most conditions.
677
Abstract: In this paper, we demonstrate the degradation of commercially available 1.2kV SiC MOSFET bare dies subjected to long periods of isothermal heating at 300°C in air. Periodic electrical measurements indicated an increase in on-state resistance to different extents for three different vendor designs, and the discovery of a progressive rectifying type forward characteristic at low drain-source voltages. Subsequent investigations to determine the cause of the degraded electrical characteristics including sectioning and SEM/TEM analysis revealed some mechanical degradation within the device gate-source cross-sections and backside drain contact metal layers. While one vendor device was severely degraded after approximately 24 hours of heating, another vendor device was only just beginning to degrade after 100 hours, indicating that these devices may be used successfully in real applications at 300°C junction temperatures for relatively long periods.
681
Abstract: In this work, we investigated the methods that measure the threshold voltage (Vth) instability without relaxation of the gate stress during the Vth measurement. We propose a non-relaxation method that demonstrates exact Vth shifts compared with conventional methods that are not as accurate. In the non-relaxation method, the constant gate-source voltage (Vgs) is continuously applied as a gate stress while the drain voltage (Vds) shift required to maintain a constant drain current (Id) is measured. Then, the Vds shift is converted to a Vth shift. The Vth shift values measured by the non-relaxation method are larger than those measured by the other methods, which means that the non-relaxation method can very accurately measure the Vth shift.
685
Abstract: In this study, the necessity and beneficial characteristics of SiC power devices for novel power electronic applications are shown from an application point of view. The body diode properties of state of the art 1200 V SiC MOSFETs are discussed and the dependencies of switching speed are derived. Furthermore, the calculation of the fundamental efficiency limit of 99.67 % at the example of a bidirectional DC/DC converter operating at 100 kHz is shown.
689
Abstract: Lateral MOSFET devices with a thin surface counter-doped layer using Sb and As with and without NO passivation have been fabricated and characterized. The results demonstrate that Sb and As counter-dope the interface without significant trap passivation while in combination with NO there is a superposition of both trap passivation and counter-doping related performance enhancement. In addition, by varying the counter doping level, a universal mobility characteristics of NO passivated devices has been identified.
693
Abstract: We report here on results obtained using a time-dependent drift-diffusion model to simulate ion transport in the gate oxide of a SiC MOS device during bias-temperature instability measurements to assess the impact on threshold voltage under typical testing conditions. Measured threshold voltage is found to depend strongly on the temperature and mobile ion species, which in combination with the measurement parameters determine how the ions react to the stress and measurement sequence. Simulations show that, based on their mobilities, both potassium-like and copper-like ions may be responsible for experimental observations of a negative trend in threshold instability above 100 °C for SiC MOS devices.
697
Abstract: A family of planar MOSFETs with voltage ratings from 900 V to 15 kV are demonstrated. This family of planar MOSFETs represents Cree’s next generation MOSFET design and process, in which we continue to refine and evolve device design and processing to further shrink die sizes and enhance device performance. At voltage ratings of 3.3 kV and above, the specific on-resistance of the MOSFETs is approaching the theoretical limit. MOSFET switching performance in a clamped inductive switching circuit for the full range of voltage ratings is also demonstrated. Finally, improved threshold voltage and body diode stability under long-term stresses are presented.
701
Abstract: Effects of gamma-ray irradiation and subsequent thermal annealing on the characteristics of vertical structure power Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) fabricated on 4H-SiC were studied. After irradiation at 1.2 MGy, the drain current – gate voltage curves of the MOSFETs shifted to the negative voltage side and the leakage drain current at inverse voltage increased. No significant change in the degraded electrical characteristics of SiC MOSFETs was observed by room temperature annealing. The degraded characteristics of SiC MOSFETs began to recover by annealing above 120 °C, and their characteristics reached almost the initial ones by annealing at 360 °C.
705
Abstract: We study the impact of different nitric oxide (NO) post oxidation annealing (POA) procedures on the on resistance Ron of n-channel MOSFETs and on the threshold voltage shift ∆Vth following positive bias temperature stress (PBTS). All samples were annealed in an NO containing atmosphere at various temperatures and times. A positive stress voltage of 30 V was chosen which corresponds to an electric field of about 4.3 MV/cm. The NO POA causes a decrease in overall ∆Vth for longer NO POA times and higher NO POA temperatures. As opposed to the change in ∆Vth, the device Ron increases with NO POA temperature and time.
709