Solvent Design for High-Purity SiC Solution Growth

Article Preview

Abstract:

In order to design a solvent for high-purity SiC solution growth, the impurity incorporation and the carbon solubility of various solvent materials have been investigated. Among the transition metal elements, the impurity elements of Cr, Ti, V and Hf are more readily incorporate during the solution growth than the other transition metal elements. The thermodynamic calculation revealed that the Y-Si solvent has relatively large carbon solubility, which is comparable to the Cr-Si and Ti-Si solvents often used in the solution growth of bulk SiC crystals. From these results, the Y-Si solvent is expected to be a suitable solvent for the high-purity SiC solution growth. Furthermore, we have demonstrated that the Y-Si solvent can achieve lower incorporation of metal impurity in the grown crystal than the Cr-Si solvent maintaining the growth rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-35

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, and T. Ujihara, Appl. Phys. Express, 5 (2012) 115501.

DOI: 10.1143/apex.5.115501

Google Scholar

[2] S. Harada, Y. Yamamoto, K. Seki, A. Horio, M. Tagawa, and T. Ujihara, Acta Mater. 81 (2014) 284.

Google Scholar

[3] S. Harada, Y. Yamamoto, K. Seki, A. Horio, T. Mitsuhashi, M. Tagawa, and T. Ujihara, APL Mater. 1 (2014) 022109.

Google Scholar

[4] S. Harada, Y. Yamamoto, K. Seki, and T. Ujihara, Mater. Sci. Forum, 740-742 (2013) 189.

Google Scholar

[5] Y. Yamamoto, S. Harada, K. Seki, A. Horio, T. Mitsuhashi, D. Koike, M. Tagawa, and T. Ujihara, Appl. Phys. Express, 7 (2014) 065501.

DOI: 10.7567/apex.7.065501

Google Scholar

[6] K. Kusunoki, S. Munetoh, K. Kamei, M. Hasebe, T. Ujihara, and K. Nakajima, Mater. Sci. Forum, 457-460 (2004) 123.

DOI: 10.4028/www.scientific.net/msf.457-460.123

Google Scholar

[7] K. Danno, H. Saitoh, A. Seki, Y. Fujiwara, T. Ishii, H. Sakamoto, and Y. Kawai, Mater. Sci. Forum, 645-648 (2010) 13.

Google Scholar

[8] T. Mitani, N. Komatsu, T. Takahashi, T. Kato, K. Fujii, T. Ujihara, Y. Matsumoto, K. Kurashige, and H. Okumura, J. Cryst. Growth, 401 (2014) 681.

DOI: 10.1016/j.jcrysgro.2013.11.031

Google Scholar

[9] S. Harada, K. Seki, Y. Yamamoto, C. Zhu, Y. Yamamoto, S. Arai, J. Yamasaki, N. Tanaka, and T. Ujihara, Cryst. Growth Des., 12 (2012) 3209.

Google Scholar

[10] K. Maier, J. Schneider, W. Wilkening, S. Leibenzeder, and R. Stein, Mater. Sci. Eng., B11 (1992) 27.

Google Scholar

[11] A. Uddin, H. Mitsuhashi, and T. Uemoto, Jpn. J. Appl. Phys., 33 (1994) L908.

Google Scholar

[12] A. Horio, S. Harada, D. Koike, K. Murayama, K. Aoyagi, T. Sakai, M. Tagawa, and T. Ujihara, Jpn. J. Appl. Phys., 55 (2016) 01AC01.

DOI: 10.7567/jjap.55.01ac01

Google Scholar

[13] D. M. Cupid and H. J. Seifert, J. Phase Equilib. Diff., 28, (2007) 90.

Google Scholar

[14] H. M. Chen, Y. Xiang, S. Wang, F. Zheng, L. B. Liu, and Z. P. Jin, J. Alloys Compd., 474 (2009) 76.

Google Scholar

[15] H. Nowotny, E. Parthe, R. Kieffer, and F. Benesovsky, Monatsh. Chem. (1954) 255.

Google Scholar

[16] M. Kado, H. Daikoku, H. Sakamoto, H. Suzuki, T. Bessho, N. Yashiro, K. Kusunoki, N. Okada, K. Moriguchi, and K. Kamei, Mater. Sci. Forum 740-742 (2013) 73.

DOI: 10.4028/www.scientific.net/msf.740-742.65

Google Scholar