Impact of Channel Mobility Improvement Using Boron Diffusion on Different Power MOSFETs Voltage Classes

Article Preview

Abstract:

SiC planar VDMOS of three voltages ratings (1.7kV, 3.3kV and 4.5kV) have been fabricated using a Boron diffusion process into the thermal gate oxide for improving the SiO2/SiC interface quality. Experimental results show a remarkable increase of the effective channel mobility which increases the device current capability, especially at room temperatures. At high temperatures, the impact of the Boron treatment is lower since the major contribution of the drift layer to the on-resistance. In addition, the intrinsic body diode characteristics approximate to that of an ideal PiN diode, and the blocking capability is not compromised by the use of Boron for the gate oxide formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

537-540

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Roussel, SiC Market and Industry Update, International SiC Power Electronics Applications Workshop, ISiCPEAW, Kista, Sweden, (2011).

Google Scholar

[2] J. Millán, P. Godignon, X. Perpiñà, J. Rebollo., A survey of wide band gap power semiconductor devices, IEEE Trans. on Power Electronics, vol. 29, no. 5, pp.2155-2163, (2014).

DOI: 10.1109/tpel.2013.2268900

Google Scholar

[3] http: /www. genesicsemi. com/index. php/sic-products/schottky.

Google Scholar

[4] http: /www. wolfspeed. com/power/products/sic-mosfets/table.

Google Scholar

[5] http: /www. rohm. com.

Google Scholar

[6] M. K. Das, Recent Advances in (0001) 4H-SiC MOS Device Technology, Materials Science Forum, vols. 457-460, pp.1275-1280, (2004).

DOI: 10.4028/www.scientific.net/msf.457-460.1275

Google Scholar

[7] P. Fiorenza et Al., SiC/4H-SiC interface doping during post-deposition annealing of the oxide in N2O and POCl3, Applied Physics Letters, Vol. 105 , nº15, Oct. (2013).

DOI: 10.1063/1.4824980

Google Scholar

[8] D. Okamoto, H. Yano, K. Hirata, T. Hatayama and T. Fuyuki, Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide, IEEE Electron Dev. Lett., vol. 31, no. 7, pp.710-712, (2010).

DOI: 10.1109/led.2010.2047239

Google Scholar

[9] D. J. Lichtenwalner et Al., High-Mobility SiC MOSFETs with Chemically Modified Interfaces, Materials Science Forum, Vols. 821-823, pp.749-752, June (2015).

DOI: 10.4028/www.scientific.net/msf.821-823.749

Google Scholar

[10] D. Okamoto et Al. Improved Channel Mobility in 4H-SiC MOSFETs by Boron Passivation, IEEE Electron Device Letters, vol. 35, no. 12, p.1176–1178, Dec. (2014).

DOI: 10.1109/led.2014.2362768

Google Scholar

[11] M. Cabello, V. Soler, J. Montserrat, J. Rebollo, J. Millán and P. Godignon, High mobilities SiC N-MOSFET using nitrided gate oxide with Boron diffusion treatment,. Proc. of E-MRS, Symposium L, Lille (France), May (2016).

DOI: 10.1109/ispsd.2016.7520833

Google Scholar

[12] V. Soler, M. Cabello, M. Berthou, J. Montserrat, J. Rebollo, J. Millan, P. Godignon, E. Bianda, A. Mihaila. 4. 5kV SiC power MOSFET with Boron Doped Gate Dielectric. ISPSD (2016).

DOI: 10.1109/ispsd.2016.7520833

Google Scholar