Design of a 4H-SiC RESURF n-LDMOS Transistor for High Voltage Integrated Circuits

Article Preview

Abstract:

In this work, a lateral 4H-SiC n-LDMOS transistor, based on the principle of a reduced surface field due to charge compensation, is investigated by numerical simulations, in order to find adequate fabrication parameters for a lightly doped p-type epitaxy in combination with a higher doped channel region. The purpose of this work is the integration into an existing technology for a 10 V 4H-SiC-CMOS process. The simulations predict in a blocking voltage of 1.3 kV in combination with an On-resistance of 17 mΩcm2 for a device with a RESURF structure with a total implanted Al concentration of 6∙1016 cm-3 and a depth of 1 μm, a field plate of 5 μm and a drift region of 20 μm. The threshold voltage varies from 5 V to 10 V, depending on the thickness of the gate oxide (50 nm to 100 nm).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

629-632

Citation:

Online since:

July 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Appels and H. M. J. Vaes, International Electron Devices Meeting, 1979, pp.238-241.

Google Scholar

[2] D. Krizay, G. Charitat and S. Amon, Solid-State Electronics, Vol. 39, Issue 9, 1996, pp.1353-1358.

Google Scholar

[3] A. W. Ludikhuize, In: Proceedings ISPSD, 2000, France.

Google Scholar

[4] T. Erlbacher, Lateral Power Transistors in Integrated Circuits, Springer, (2014).

Google Scholar

[5] T. Kimoto, H. Kosugi, J. Suda, Y. Kanzaki and H. Matsunami, IEEE Transactions on Electron Devices, Vol. 52, No. 1, 2005, pp.112-116.

Google Scholar

[6] Information on https://www.synopsys.com/silicon/tcad.html.

Google Scholar

[7] C. Csato, F. Krippendorf, S. Akhmadaliev, J. von Borany, W. Han, T. Siefke, A. Zowalla and M. Rüb, Nucl. Instr. Meth. Phys. Res., B 365, 2015, pp.182-186.

DOI: 10.1016/j.nimb.2015.07.102

Google Scholar

[8] S. Banerjee, K. Chatty, T. P. Chow and R. J. Gutmann, IEEE Electron Device Letter, Vol. 22, No.5, 2001, pp.209-211.

Google Scholar

[9] S. Banerjee, K. Chatty, T. P. Chow and R. J. Gutmann, IEEE Electron Device Letter, Vol. 21, No.7, 2000, pp.356-358.

DOI: 10.1109/55.847379

Google Scholar

[10] O. Seok, H. W. Kim, J. H. Moon, H. Lee and W. Bahng, Jpn. J. Appl. Phys., Vol. 57, 2018, p. 06HC08.

Google Scholar

[11] C.W. Chan, F. Li, A. Sanchez, P.A. Mawby and P. M. Gammon, IEEE Transactions on Electron Devices, Vol. 64, No. 9, 2017, pp.3713-3718.

DOI: 10.1109/ted.2017.2719898

Google Scholar

[12] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Springer, New York, (2008).

Google Scholar

[13] M. Noborio, J. Suda and T. Kimoto, Appl. Phys. Express, Vol. 1, 2008, pp.101403-3.

Google Scholar