Local Measurements of Diffusion Length and Chemical Character of Metal Clusters in Multicrystalline Silicon

Article Preview

Abstract:

We present a comprehensive description of synchrotron-based analytical microprobe techniques used to locally measure the diffusion length and chemical character of metal clusters in multicrystalline silicon (mc-Si) solar cell material. The techniques discussed are (a) X-ray fluorescence microscopy, capable of determining the spatial distribution, elemental nature, size, morphology, and depth of metal-rich particles as small as 30 nm in diameter; (b) X-ray absorption microspectroscopy, capable of determining the chemical states of these metal-rich precipitates, (c) X-ray beam induced current (XBIC), which maps the minority carrier recombination activity, and (d) Spectrally-resolved XBIC, which maps the minority carrier diffusion length. Sensitivity limits, optimal synchrotron characteristics, and experimental flowcharts are discussed. These techniques have elucidated the nature and effects of metal-rich particles in mc-Si and the physical mechanisms limiting metal gettering from mc-Si, and have opened several promising new research directions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

577-584

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. McHugo, A.C. Thompson, et al.: J. Appl. Phys. Vol. 89 (2001), p.4282.

Google Scholar

[2] S.A. McHugo, A. C. Thompson, I. Périchaud, and S. Martinuzzi: Appl. Phys. Lett. Vol. 72 (1998), p.3482.

Google Scholar

[3] S.A. McHugo: Appl. Phys. Lett. Vol. 71 (1997), p. (1984).

Google Scholar

[4] S.A. McHugo, A.C. Thompson, et al.: Journal of Crystal Growth Vol. 210 (2000), p.395.

Google Scholar

[5] H. Hieslmair, A.A. Istratov, et al.: Proc. 10th NREL Workshop on Crystalline Silicon Solar Cell Materials and Processes (Copper Mountain, CO, USA, 2000), p.162.

Google Scholar

[6] O.F. Vyvenko, T. Buonassisi, A. A. Istratov, E. R. Weber, M. Kittler, and W. Seifert: J. Phys.: Condens. Matter Vol. 14 (2002), p.13079.

DOI: 10.1088/0953-8984/14/48/353

Google Scholar

[7] A.A. Istratov, H. Hieslmair, et al.: Solar Energy Materials & Solar Cells Vol. 72 (2002), p.441.

Google Scholar

[8] T. Buonassisi, A.A. Istratov, et al.: J. Appl. Phys. Vol. 97 (2005), p.074901.

Google Scholar

[9] M. Heuer, T. Buonassisi, et al.: submitted to Phys. Rev. Lett.

Google Scholar

[10] C. Flink, S.A. Mchugo, et al.: Proc. 10th Workshop on Crystalline Silicon Solar Cell Materials and Processes, 2000), p.212.

Google Scholar

[11] Y. Ohshita, K. Arafune, et al.: Proc. 31st IEEE Photovoltaic Specialists Conference (Lake Buena Vista, FL, USA, 2005), p.1269.

Google Scholar

[12] O.F. Vyvenko, T. Buonassisi, et al.: J. Phys.: Condens. Matter Vol. 16 (2004), p. S141.

Google Scholar

[13] T. Buonassisi, M.A. Marcus, et al.: J. Appl. Phys. Vol. 97 (2005), p.063503.

Google Scholar

[14] X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. D.C. Koningsberger, and R. Prins. (Wiley-Interscience, Eindhoven, The Netherlands, 1988).

DOI: 10.1002/nadc.19880360617

Google Scholar

[15] O.F. Vyvenko, T. Buonassisi, et al.: J. Appl. Phys. Vol. 91 (2002), p.3614.

Google Scholar

[16] T. Buonassisi, O.F. Vyvenko, et al.: J. Appl. Phys. Vol. 95 (2004), p.1556.

Google Scholar

[17] T. Buonassisi, A.A. Istratov, et al.: Submitted to Appl. Phys. Lett. (2005).

Google Scholar

[18] D. Attwood: Soft X-rays and extreme ultraviolet radiation: Principles and applications. (Cambridge University Press, Cambridge, UK, 2000).

DOI: 10.1007/s10005-001-0023-1

Google Scholar

[19] J.H. Underwood, A.C. Thompson, et al.: Nucl. Instr. and Meth. A Vol. 266 (1988), p.318.

Google Scholar

[20] M.A. Marcus, A.A. MacDowell, et al.: J. Synchrotron Radiation Vol. 11 (2004), p.239.

Google Scholar

[21] S.M. Heald, E.A. Stern, et al.: J. Synchrotron Rad. Vol. 8 (2001), p.342.

Google Scholar

[22] W. Yun, B. Lai, et al.: Rev. Sci. Instrum. Vol. 70 (1999), p.2238.

Google Scholar

[23] S.A. McHugo, A.C. Thompson, et al.: Physica B Vol. 273-274 (1999), p.371.

Google Scholar

[24] P.S. Plekhanov, R. Gafiteanu, U. M. Gosele, and T. Y. Tan: J. Appl. Phys. Vol. 86 (1999), p.2453.

Google Scholar

[25] H. Hieslmair, S.A. McHugo, et al.: in Properties of Crystalline Silicon, (Short Run Press, Exeter, 1999), p.775.

Google Scholar

[26] S.M. Myers, M. Seibt, and W. Schröter: J. Appl. Phys. Vol. 88 (2000), p.3795.

Google Scholar

[27] A.A. Istratov, W. Huber, and E.R. Weber: Appl. Phys. Lett. Vol. 85 (2004), p.4472.

Google Scholar

[28] R.C. Dorward and J.S. Kirkaldy: J. Mater. Sci. Vol. 3 (1968), p.502.

Google Scholar

[29] S.A. McHugo, E.R. Weber, et al.: Appl. Phys. Lett. Vol. 69 (1996), p.3060.

Google Scholar

[30] T. Buonassisi, M. Heuer, et al.: Proc. 20th European Photovoltaic Solar Energy Conference (Barcelona, Spain, 2005), p. in press.

Google Scholar

[31] D. Macdonald, A. Cuevas, et al.: Proc. 29th IEEE Photovoltaic Specialists Conference (New Orleans, USA, 2002), p.1707.

Google Scholar

[32] S. Pizzini, L. Bigoni, et al.: J. Electrochem. Soc. (USA) Vol. 133 (1986), p.2363.

Google Scholar

[33] S.A. McHugo, H. Hieslmair, and E.R. Weber: Applied Physics A: Material Science & Processing Vol. 64 (1997), p.127.

Google Scholar

[34] S. Binetti, S. Ratti, et al.: Proc. 14th European Photovoltaic Solar Energy Conference (Barcelona, Spain, 1994), p.709.

Google Scholar