Critical Thickness Threshold in HfO2 Layers

Abstract:

Article Preview

Info:

Periodical:

Solid State Phenomena (Volume 134)

Edited by:

Paul Mertens, Marc Meuris and Marc Heyns

Pages:

67-70

Citation:

P. Besson et al., "Critical Thickness Threshold in HfO2 Layers ", Solid State Phenomena, Vol. 134, pp. 67-70, 2008

Online since:

November 2007

Export:

Price:

$38.00

[1] Karen Dabertrand, et al, EMRS-2006, Symposium.

[2] Shinji Fujii, et al, Applied Physics Letters 86 (2005).

[3] F. Tardif, et al, UCPSS, Belgium (1996), p.175.

[4] S. Petitdidier, et al, UCPSS, (2002).

[5] N. Rochat, et al. Physica Status Solidi (c), 1 (2003).

[20] [40] [60] [80] 100 120 140 160 0 20 40 60 80 100 120 140 160 430°C 450°C 500°C 550°C Initial Thickness [Å] Residual Thickness [Å].

0, 01 0, 02 0, 03 0, 04 0, 05 0, 06 0, 07 0, 08 0, 09 0, 1 0, 11 0, 12 0, 13 600 700 800 900 1000 1100 1200 1300 Initial Thickness After First Etch Step After Second Etch Step Wavenumber [cm-1 ] ATR Absorbance [a. u. ] 41Å 36Å 25Å 9Å 31Å 19Å 0Å Fig. 1. Threshold for different deposition temp. of MOCVD HfO2 layers as a function of initial thickness Fig. 4. 550°C MOCVD HfO2 ATR FTIR spectra evolution as a function of the residual thickness.

0, 05 0, 1 0, 15 0, 2 0, 25 600 700 800 900 1000 1100 1200 1300 Wave number [cm-1 ] Absorbance [a. u. ] 450°C 50Å 450°C 59Å 450°C 65Å 430°C 90Å 430°C 110Å 1, 00E+10 1, 00E+11 1, 00E+12 1, 00E+13 1, 00E+14 1, 00E+15 10 15 20 25 30 35 40 45 50 0.

DOI: https://doi.org/10.21236/ada430858

[10] [20] [30] [40] [50] MOCVD 550°C ALCVD 350°C + 15 min Atm 600°C Anneal ALCVD 350°C As Dep SAMPLES ABOVE THRESHOLD TXRF LLD Initial Deposited Thickness [Å] Residual Thickness after HF Etch [Å] Hf concentration [at/cm²] Fig. 2. ATR FTIR spectra of 450°C and 430°C MOCVD HfO2 layers as a function of initial thickness Fig. 5. Hafnium atoms surface concentration as a function of the initial and residual thickness y = -0, 23x+49 R.

[2] = 0, 98 y = -0, 12x+77 R.

[2] = 0, 99.

[15] [30] [45] [60] [75] [90] 105 120 0 100 200 300 400 500 600 700 Etched Time [sec] Residual Thickness [Å] y = -0, 28x+26 R2 = 0, 992 y = -0, 43x+22 R.

[2] = 0, 981 y = -0, 49x+27 R.

[2] = 0, 996 y = -0, 60x+21, 5 R.

[2] = 0, 9916.

[15] [30] 0 10 20 30 40 50 60 70 80 90 y = -0, 23x+49 R.

[2] = 0, 98 y = -0, 12x+77 R.

[2] = 0, 99.

[15] [30] [45] [60] [75] [90] 105 120 0 100 200 300 400 500 600 700 Etched Time [sec] Residual Thickness [Å] y = -0, 28x+26 R2 = 0, 992 y = -0, 43x+22 R2 = 0, 981 y = -0, 49x+27 R2 = 0, 996 y = -0, 60x+21, 5 R2 = 0, 9916.

[15] [30] 0 10 20 30 40 50 60 70 80 90.

[8] [16] [24] [32] [40] [48] 0 200 400 600 800 1000.

0, 5.

[1] 1, 5.

[2] 2, 5.

[3] Wf A Wf B Wf C Wet Etch Process Time [min] Residual Thickness [Å] Wide Channel Oblique Incidence Haze Intensity [a. u. ] Fig. 3. 350°C ALCVD HfO2 etch rate in HF/HCl mixture as a function of the initial thickness. White squares and black triangles are as dep" and "600°C 15min annealed, respectively Fig. 6. Haze intensity evolution as a function of etch time and residual thickness.