[1]
P. G. Neudeck, Silicon Carbide Technology, in: W-K Chen (Ed.), The VLSI Handbook, 2nd Edition, CRC Press, Inc. Boca Raton, Florida, 2007, p.5.1-5.34.
Google Scholar
[2]
A.A Lebedev, Deep-level Defects in SiC Materials and Devices, in: Z. C. Feng, J. H. Zhao (Eds.) Silicon Carbide Materials, Processing and Devices, Taylor & Francis, New York, London, 2004, pp.128-168.
Google Scholar
[3]
D.V. Lang, Deep level transient spectroscopy: A new method to characterize traps in semiconductors, J. Appl. Phys. 45 (1974), 3023-3032.
DOI: 10.1063/1.1663719
Google Scholar
[4]
H. Lefevre, M. Schulz, Double Correlation Technique (DDLTS) for the Analysis of Deep Level Profiles in Semiconductors, Appl. Phys. 12 (1977) 45-53.
DOI: 10.1007/bf00900067
Google Scholar
[5]
T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schöner, and N. Nordell, Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy, Phys. Status Solidi A 162 (1997) 199-225.
DOI: 10.1002/1521-396x(199707)162:1<199::aid-pssa199>3.0.co;2-0
Google Scholar
[6]
A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, C.F. Pirri, S. Ferrero and F. Giorgis, Deep levels by proton and electron irradiation in 4H-SiC, J. Appl. Phys. 98 (2005) 53706.
DOI: 10.1063/1.2014941
Google Scholar
[7]
L. Storasta, J.P. Bergman, E. Janzén, A. Henry and J. Lu, Deep levels created by electron irradiation in 4H-SiC, J. Appl. Phys. 96 (2004) 4909-4915.
DOI: 10.1063/1.1778819
Google Scholar
[8]
C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Janzén, J.L. Lindström, S. Savage and N. Nordell, Deep level defects in electron-irradiated 4H-SiC epitaxial layers, J. Appl. Phys. 81 (1997) 6155-6159.
DOI: 10.1063/1.364397
Google Scholar
[9]
F. Fabbri, D. Natalini, A. Cavallini, T. Sekiguchi, R. Nipoti and F. Moscatelli, Comparision between cathodoluminescence spectroscopy and capacitance transient spectroscopy on Al+ ion implanted 4H-SiC p+/n diodes, Superlattices and Microstructures 45 (2009) 383-387.
DOI: 10.1016/j.spmi.2008.10.024
Google Scholar
[10]
M. Skowronski, S. Ha, Degradation of hexagonal silicon-carbide-based bipolar devices, J. Appl. Phys. 99 (2006), 011101.
DOI: 10.1063/1.2159578
Google Scholar
[11]
Z-Q. Fang, D.C. Look, A Saxler and W.C. Mitchel, Characetrization of deep centers in bulk n-type 4H-SiC, Physica B 308-310 (2001), 706-709.
DOI: 10.1016/s0921-4526(01)00876-6
Google Scholar
[12]
C.G. Hemmingsson, N.T. Son, A. Ellison, J. Zhang and E. E. Janzén, Negative-U centers in 4H silicon carbide, Phys. Rev B 58 (1998) R10119-R10122.
DOI: 10.1103/physrevb.58.r10119
Google Scholar
[13]
I. Pintilie, L. Pinitilie, K. Irmscher and B. Thomas, Formation of the Z1,2 deep-level defects in 4H-SiC epitaxial layers: Evidence of nitrogen participation, Appl. Phys. Lett. 81 (2002) 4841-4843.
DOI: 10.1063/1.1529314
Google Scholar
[14]
T.A.G. Eberlein, R. Jones and P.R. Briddon, Z1/Z2 Defects in 4H-SiC, Phys. Rev. Lett. 90 (2003) 225502.
Google Scholar
[15]
A. Castaldini, A. Cavallini and L. Rigutti, Assesment of the intrinsic nature of deep level Z1/Z2 by compensation effects in proton-irradiated 4H-SiC, Semicond. Sci. Technol. 21 (2006) 724-728.
DOI: 10.1088/0268-1242/21/6/002
Google Scholar
[16]
D.J. Chadi and K.J. Chang, Energetics of DX-center formation in GaAs and AlGaAs alloys, Phys. Rev. B 39 (1989) 10063-10074.
Google Scholar
[17]
P.B. Klein, B.V. Shanabrook, S.W. Huh, A.Y. Polyakov, M. Skowronski, J.J. Sumakeris and M.J. O'Loughlin, Lifetime-limiting defects in n-4H-SiC epilayers, Appl. Phys. Lett. 88 (2006) 052110.
DOI: 10.1063/1.2170144
Google Scholar
[18]
A. Kawasuso, F. Redmann, R. Krause-Rehberg, M. Weidner, T. Frank, G. Pensl, P. Sperr, W. Triftshäuser, and H. Itoh, Annealing behavior of vacancies and Z1/2 levels in electron-irradiated 4H–SiC studied by positron annihilation and deep-level transient spectroscopy, Appl. Phys. Lett 79 (2001) 3950-3952.
DOI: 10.1063/1.1426259
Google Scholar
[19]
J. Zhang, L. Storasta, J.P. Bergman, N.T. Son and E. Janzén, Electrically active defects in n-type 4H-silicon carbide grown in a vertical hot-wall reactor, J. Appl. Phys. 93 (2003) 4708-4714.
DOI: 10.1063/1.1543240
Google Scholar