Excellent Avalanche Capability in SiC Power Device with Positively Beveled Mesa Termination

Article Preview

Abstract:

In this work, 4H-SiC p-i-n diodes with excellent single-pulse avalanche energy density (EAS) with positively beveled mesa termination have been demonstrated. The fabrication of this junction termination extension (JTE) obviates ion implantation and requires only etching process. With its uniform electric field and temperature distribution, the fabricated 4H-SiC p-i-n diodes show breakdown voltage (BV) of 886V (98.4% of the parallel-plane limit) and the inductive avalanche energy density of ~10.4J/cm2@1mH. Meanwhile, ruggedness of the avalanche breakdown has also been evidently promoted. The results confirm that this structure exhibits great capability potential in power applications.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M.M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Y. Zhang, The 2018 GaN power electronics roadmap, Journal of Physics D: Applied Physics 51(16) (2018) 163001.

DOI: 10.1088/1361-6463/aaaf9d

Google Scholar

[2] J. Biela, M. Schweizer, S. Waffler, J.W. Kolar, SiC versus Si—Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors, IEEE Transactions on Industrial Electronics 58(7) (2011) 2872-2882.

DOI: 10.1109/tie.2010.2072896

Google Scholar

[3] Q. Yan, X. Yuan, Y. Geng, A. Charalambous, X. Wu, Performance Evaluation of Split Output Converters with SiC MOSFETs and SiC Schottky Diodes, IEEE Transactions on Power Electronics 32(1) (2017) 406-422.

DOI: 10.1109/tpel.2016.2536643

Google Scholar

[4] Y. Du, J. Wang, G. Wang, A.Q. Huang, Modeling of the High-Frequency Rectifier With 10-kV SiC JBS Diodes in High-Voltage Series Resonant Type DC–DC Converters, IEEE Transactions on Power Electronics 29(8) (2014) 4288-4300.

DOI: 10.1109/tpel.2013.2288642

Google Scholar

[5] J. McBryde, A. Kadavelugu, B. Compton, S. Bhattacharya, M. Das, A. Agarwal, Performance comparison of 1200V Silicon and SiC devices for UPS application, IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, 2010, pp.2657-2662.

DOI: 10.1109/iecon.2010.5675125

Google Scholar

[6] Lutz, Josef, and R. Baburske , Some aspects on ruggedness of SiC power devices, Microelectronics Reliability 54.1(2014):49-56.

DOI: 10.1016/j.microrel.2013.09.022

Google Scholar

[7] Z. Zhu, N. Ren, H. Xu, L. Liu, Q. Guo, J. Zhang, K. Sheng, Z. Wang, Degradation of 4H-SiC MOSFET body diode under repetitive surge current stress, 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2020, pp.182-185.

DOI: 10.1109/ispsd46842.2020.9170166

Google Scholar

[8] X. Huang, E.V. Brunt, B.J. Baliga, A.Q. Huang, Orthogonal Positive-Bevel Termination for Chip-Size SiC Reverse Blocking Devices, IEEE Electron Device Letters 33(11) (2012) 1592-1594.

DOI: 10.1109/led.2012.2215003

Google Scholar

[9] K.W. Nie, W.Z. Xu, F.F. Ren, D. Zhou, D.F. Pan, J.D. Ye, D.J. Chen, R. Zhang, Y.D. Zheng, H. Lu, Highly Enhanced Inductive Current Sustaining Capability and Avalanche Ruggedness in GaN p-i-n Diodes With Shallow Bevel Termination, IEEE Electron Device Letters 41(3) (2020) 469-472.

DOI: 10.1109/led.2020.2970552

Google Scholar

[10] O. Aktas, I.C. Kizilyalli, Avalanche Capability of Vertical GaN p-n Junctions on Bulk GaN Substrates, IEEE Electron Device Letters 36(9) (2015) 890-892.

DOI: 10.1109/led.2015.2456914

Google Scholar

[11] C. Han, Y. Zhang, Q. Song, Y. Zhang, X. Tang, F. Yang, Y. Niu, An Improved ICP Etching for Mesa-Terminated 4H-SiC p-i-n Diodes, IEEE Transactions on Electron Devices 62(4) (2015) 1223-1229.

DOI: 10.1109/ted.2015.2403615

Google Scholar

[12] X. Deng, L. Li, J. Wu, C. Li, W. Chen, J. Li, Z. Li, B. Zhang, A Multiple-Ring-Modulated JTE Technique for 4H-SiC Power Device With Improved JTE-Dose Window, IEEE Transactions on Electron Devices 64(12) (2017) 5042-5047.

DOI: 10.1109/ted.2017.2761995

Google Scholar

[13] L. Liu, J. Wu, N. Ren, Q. Guo, K. Sheng, 1200-V 4H-SiC Merged p-i-n Schottky Diodes With High Avalanche Capability, IEEE Transactions on Electron Devices 67(9) (2020) 3679-3684.

DOI: 10.1109/ted.2020.3007136

Google Scholar

[14] T. Basler, R. Rupp, R. Gerlach, B. Zippelius, M. Draghici, Avalanche Robustness of SiC MPS Diodes, PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2016, pp.1-8.

Google Scholar

[15] A. Kanale, K. Han, B.J. Baliga, S. Bhattacharya, Stability of 4H-SiC JBS Diodes Under Repetitive Avalanche Stress, 2019 IEEE International Reliability Physics Symposium (IRPS), 2019, pp.1-6.

DOI: 10.1109/irps.2019.8720431

Google Scholar