Improved Angle Tolerance in 4H-SiC Trench Filling Epitaxy Using Chlorinated Chemistry

Article Preview

Abstract:

Trench filling epitaxy on 4HSiC using trichlorosilane (HSiCl3) and hydrogen chloride (HCl) has shown to improve the tolerance to trench angle misalignment relative to the substrate direction in deeper trenches than previously reported. Extraction of growth rates from crosssectional SEM shows that epilayer growth on the mesa corner facet is the most sensitive to trench misalignment, suggesting that HCl may mediate the facet growth rate within ±1.5º from to maintain symmetric growth.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] T. Kimoto, High-Voltage SiC Power Devices for Improved Energy Efficiency, Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 98 (2022) 161-189

DOI: 10.2183/pjab.98.011

Google Scholar

[2] V. Veliadis, SiC Mass Commercialization: Present Status and Barrier to Overcome, Mater. Sci. Forum, 1062 (2022) 125-130

DOI: 10.4028/p-6zcw3b

Google Scholar

[3] F. Udrea, G. Deboy and T. Fujihira, Superjunction Power Devices, History, Development, and Future Prospects, IEEE Transactions on Electron Devices, 64 (2017) 713-727

DOI: 10.1109/ted.2017.2658344

Google Scholar

[4] R. Kosugi, Y. Sakuma et al, Development of SiC Super-Junction (SJ) Device by Deep Trench-Filling Epitaxial Growth., Mater. Sci. Forum, 740–742 (2013) 785–788.

DOI: 10.4028/www.scientific.net/msf.740-742.785

Google Scholar

[5] S. Ji, K. Kojima, R. Kosugi et al, Influence of Growth Pressure on Filling 4H-SiC Trenches by CVD Method, Jpn. J. Appl. Phys., 55 (2015) 01AC04

DOI: 10.7567/jjap.55.01ac04

Google Scholar

[6] S. Ji, R. Kosugi et al, A Study of CVD Growth Parameters to Fill 50µm Deep 4H-SiC Trenches, Mater. Sci. Forum, 963 (2019) 131-135

DOI: 10.4028/www.scientific.net/msf.963.131

Google Scholar

[7] Y. Ishida, Proposal of the Mechanism for Inclination Growth on a Mesa Top During 4H-SiC Trench Filling Epitaxy, Jpn. J. Appl. Phys., 56 (2017) 070307

DOI: 10.7567/jjap.56.070307

Google Scholar

[8] R. Kosugi, J. Shiyang, K. Mochizuki et al, Strong Impact of Slight Trench Direction Misalignment from [11-20] on Deep Trench-Filling Epitaxy for SiC Super-junction Devices, Jpn. J. Appl. Phys., 56 (2017), 04CR05

DOI: 10.7567/jjap.56.04cr05

Google Scholar

[9] S. Ji, R. Kosugi et al, An Empirical Growth Window Concerning the Input Ratio of HCl/ SiH4 Gases in Filling 4H-SiC Trench by CVD, Appl. Phys. Express, 10 (2017), 055505

DOI: 10.7567/apex.10.055505

Google Scholar

[10] S. Ji, R. Kosugi et al, CVD Filling of Narrow Deep 4H-SiC Trenches in a Quasi-Selective Epitaxial Growth Mode, Mater. Sci. Forum, 924 (2018) 116-119

DOI: 10.4028/www.scientific.net/msf.924.116

Google Scholar

[11] Z. Zhao, Y. Li et al, 4H-Trench Filling by Chemical Vapor Deposition Using Trichlorosilane as Si-Species Precursor, J. Cryst. Growth, 607 (2023) 127104

DOI: 10.1016/j.jcrysgro.2023.127104

Google Scholar

[12] K. Turner, G. Colston et al, Effect of Mesa Sidewall Angle on 4H-Silicon Carbide Trench Filling Epitaxy Using Trichlorosilane and Hydrogen Chloride. Adv. Mater. Interfaces, (2024) 2400466

DOI: 10.1002/admi.202470080

Google Scholar

[13] Ö. Danielsson, Understanding the Chemistry in Silicon Carbide Chemical Vapor Deposition, Mater. Sci. Forum, 924 (2018) 100-103

DOI: 10.4028/www.scientific.net/msf.924.100

Google Scholar

[14] P. Sukkaew, E. Kalered et al, Growth Mechanism of SiC Chemical Vapor Deposition: Adsorption and Surface Reactions of Active Si Species, J. Phys. Chem. C, 122 (2017) 648-661

DOI: 10.1021/acs.jpcc.7b10751

Google Scholar

[15] G. Colston, K. Turner et al, Epitaxial Trench Refill of 4H-SiC by Chlorinated Chemistry, Appl. Phys. Lett., 124 (2024) 192102

DOI: 10.1063/5.0210680

Google Scholar