Effects of Sulfurization on the Properties of 4H-SiC Schottky Contacts

Article Preview

Abstract:

This paper reports on the effect of a sulfurization thermal process of the silicon carbide surface on the properties of Ni/4H-SiC Schottky barrier. In particular, the incorporation of sulfur (S) in the 4H-SiC near-surface region was observed at the process performed at 800 °C, without any significant effect on the surface morphology. On the other hand, Ni/4H-SiC Schottky contacts fabricated on the sulfurized 4H-SiC surface showed a 0.3 eV reduction of the average barrier height with a narrower distribution, with respect to the untreated sample. These results were explained by an increase of the 4H-SiC electron affinity after sulfurization, and a Fermi level pinning effect.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] F. Roccaforte, P. Fiorenza, G. Greco, R. Lo Nigro, F. Giannazzo, F. Iucolano, M. Saggio, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectronic Engineering 187-188 (2018) 66-77.

DOI: 10.1016/j.mee.2017.11.021

Google Scholar

[2] M. Vivona, F. Giananzzo, F. Roccaforte, Materials and Processes for Schottky Contacts on Silicon Carbide, Materials 15 (2022) 298.

DOI: 10.3390/ma15010298

Google Scholar

[3] F. Roccaforte, F. Giannazzo, V. Raineri, - Nanoscale transport properties at silicon carbide interfaces, J. Phys. D: Appl. Phys. 43 (2010) 223001.

DOI: 10.1088/0022-3727/43/22/223001

Google Scholar

[4] S-Y. Han, J-L. Lee, Interpretation of Fermi level pinning on 4H-SiC using synchrotron photoemission spectroscopy, Appl. Phys. Lett. 84 (2004) 538-540.

DOI: 10.1063/1.1644334

Google Scholar

[5] B.J. Skromme, E. Luckowski, K. Moore, S. Clemens, D. Resnick, T. Gehoski, D. Ganser, Fermi Level Pinning and Schottky Barrier Characteristics on Reactively Ion Etched 4H-SiC, Mater. Sci. Forum 338-342 (2000) 1029-1032.

DOI: 10.4028/www.scientific.net/msf.338-342.1029

Google Scholar

[6] B-Y. Tsui, J-C. Cheng, C-T. Yen, C-Y. Lee, Strong Fermi-level pinning induced by argon inductively coupled plasma treatment and post-metal deposition annealing on 4H-SiC, Solid-State Electronics 133 (2017) 83-87.

DOI: 10.1016/j.sse.2017.05.003

Google Scholar

[7] J-C. Cheng, B-Yue Tsui, Effects of Rapid Thermal Annealing on Ar Inductively Coupled Plasma-Treated n-Type 4H-SiC Schottky and Ohmic Contacts, IEEE Transactions on Electron Devices 65(9) (2018) 3739-3745.

DOI: 10.1109/ted.2018.2859272

Google Scholar

[8] F. Roccaforte, F. La Via, V. Raineri, P. Musumeci, L. Calcagno, G.G. Condorelli, Highly reproducible ideal SiC Schottky rectifiers: effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height, Appl. Phys. A 77 (2003) 827–833.

DOI: 10.1007/s00339-002-1981-8

Google Scholar

[9] F. Triendl, G. Pfusterschmied, C. Berger, S. Schwarz, W. Artner, U. Schmid, Ti/4H-SiC schottky barrier modulation by ultrathin a-SiC:H interface layer, Thin Solid Films 721 (2021) 138539.

DOI: 10.1016/j.tsf.2021.138539

Google Scholar

[10] F. Roccaforte, S. Libertino, F. Giannazzo, C. Bongiorno, F. La Via, V. Raineri, Ion irradiation of inhomogeneous Schottky barriers on silicon carbide, J. Appl. Phys. 97 (2005) 123502.

DOI: 10.1063/1.1928328

Google Scholar

[11] J. Yang, H. Li, S. Dong, X. Li, Pinning Effect on Fermi Level in 4H-SiC Schottky Diode Caused by 40-MeV Si Ions, IEEE Transactions on Nuclear Science 66(9) (2019) 2042-2047.

DOI: 10.1109/tns.2019.2929070

Google Scholar

[12] S.A. Reshanov, G. Pensl, H. Nagasawa, A. Schoener, Identification of sulfur double donors in 4H, 6H-, and 3C-silicon carbide, J. Appl. Phys. 99 (2006) 123717.

DOI: 10.1063/1.2208547

Google Scholar

[13] T. Matsuoka, M. Kaneko, T. Kimoto, Physical properties of sulfur double donors in 4H-SiC introduced by ion implantation, Jpn. J. Appl. Phys. 62 (2023) 010908.

DOI: 10.35848/1347-4065/acb309

Google Scholar

[14] F. Giannazzo, S.E. Panasci, E. Schilirò, F. Roccaforte, A. Koos, M. Nemeth, B. Pécz, Esaki Diode Behavior in Highly Uniform MoS2/Silicon Carbide Heterojunctions, Adv. Mater. Interfaces 9 (2022) 2200915.

DOI: 10.1002/admi.202200915

Google Scholar

[15] S. Wolff, N. Tilgner, F. Speck, P. Schädlich, F. Göhler, Th. Seyller, Quasi-Freestanding Graphene via Sulfur Intercalation: Evidence for a Transition State, Adv. Mater. Interfaces 11 (2024) 2300725.

DOI: 10.1002/admi.202300725

Google Scholar

[16] F. Roccaforte, F. La Via, V. Raineri, R. Pierobon, E. Zanoni, Richardson's constant in inhomogeneous silicon carbide Schottky contacts, J. Appl. Phys. 93 (2003) 9137–9144.

DOI: 10.1063/1.1573750

Google Scholar

[17] J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, Electron transport of inhomogeneous Schottky barriers: A numerical study, J. Appl. Phys. 70 (12) (1991) 7403-7424.

DOI: 10.1063/1.349737

Google Scholar

[18] F. Roccaforte, M. Vivona, S.E. Panasci, G. Greco, P. Fiorenza, A. Sulyok, A. Koos, B. Pecz, F. Giannazzo, Schottky contacts on sulfurized silicon carbide (4H-SiC) surface, Appl. Phys. Lett. 124 (2024) 102102.

DOI: 10.1063/5.0192691

Google Scholar