[1]
A. Bolotnikov et al., "Overview of 1.2kV - 2.2kV SiC MOSFETs targeted for industrial power conversion applications," Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2015-May, no. May, p.2445–2452, 2015.
DOI: 10.1109/APEC.2015.7104691
Google Scholar
[2]
T. Kimoto, "Material science and device physics in SiC technology for high-voltage power devices," Jpn J Appl Phys, vol. 54, no. 4, p.040103, Apr. 2015.
DOI: 10.7567/JJAP.54.040103
Google Scholar
[3]
K. Melnyk et al., "3.3 kV 4H-SiC Trench Semi-Superjunction Schottky Diode With Improved ON-State Resistance," IEEE Trans Electron Devices, vol. 71, no. 9, p.5573–5580, 2024.
DOI: 10.1109/TED.2024.3435181
Google Scholar
[4]
X. Zhong, B. Wang, and K. Sheng, "Design and experimental demonstration of 1.35 kV SiC super junction Schottky diode," Proceedings of the International Symposium on Power Semiconductor Devices and ICs, vol. 2016-July, p.231–234, 2016.
DOI: 10.1109/ISPSD.2016.7520820
Google Scholar
[5]
R. Kosugi et al., "First experimental demonstration of SiC super-junction (SJ) structure by multi-epitaxial growth method," in 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD), IEEE, Jun. 2014, p.346–349.
DOI: 10.1109/ISPSD.2014.6856047
Google Scholar
[6]
R. Kosugi et al., "Breaking the Theoretical Limit of 6.5 kV-Class 4H-SiC Super-Junction (SJ) MOSFETs by Trench-Filling Epitaxial Growth," Proceedings of the International Symposium on Power Semiconductor Devices and ICs, vol. 2019-May, p.39–42, 2019.
DOI: 10.1109/ISPSD.2019.8757632
Google Scholar
[7]
B. Wang, H. Wang, C. Wang, N. Ren, Q. Guo, and K. Sheng, "Design and Fabrication of 1.92 kV 4H-SiC Super-Junction SBD With Wide-Trench Termination," IEEE Trans Electron Devices, vol. 68, no. 11, p.5674–5681, Nov. 2021.
DOI: 10.1109/TED.2021.3109107
Google Scholar
[8]
J. Li et al., "Morphology improvement of SiC trench by inductively coupled plasma etching using Ni/Al 2 O 3 bilayer mask," Mater Sci Semicond Process, vol. 67, no. February, p.104–109, Aug. 2017.
DOI: 10.1016/j.mssp.2017.05.022
Google Scholar
[9]
K. Racka-Szmidt, B. Stonio, J. Żelazko, M. Filipiak, and M. Sochacki, "A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide," Materials, vol. 15, no. 1, p.123, Dec. 2021.
DOI: 10.3390/ma15010123
Google Scholar
[10]
R. Liu et al., "A dry etching method for 4H-SiC via using photoresist mask," J Cryst Growth, vol. 531, no. November 2019, p.125351, Feb. 2020.
DOI: 10.1016/j.jcrysgro.2019.125351
Google Scholar
[11]
F. A. Khan and I. Adesida, "High rate etching of SiC using inductively coupled plasma reactive ion etching in SF6-based gas mixtures," Appl Phys Lett, vol. 75, no. 15, p.2268–2270, Oct. 1999.
DOI: 10.1063/1.124986
Google Scholar
[12]
G. M. Beheim and L. J. Evans, "Control of Trenching and Surface Roughness in Deep Reactive Ion Etched 4H and 6H SiC," MRS Proceedings, vol. 911, no. 1, p.0911-B10-15, Feb. 2006.
DOI: 10.1557/PROC-0911-B10-15
Google Scholar
[13]
J.-H. Min, G.-R. Lee, J.-K. Lee, S. H. Moon, and C.-K. Kim, "Effect of sidewall properties on the bottom microtrench during SiO2 etching in a CF4 plasma," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 23, no. 2, p.425–432, Mar. 2005.
DOI: 10.1116/1.1865113
Google Scholar
[14]
X. Zhong, B. Wang, J. Wang, and K. Sheng, "Experimental Demonstration and Analysis of a 1.35-kV 0.92-m $\Omega \cdot \text {cm}^{2}$ SiC Superjunction Schottky Diode," IEEE Trans Electron Devices, vol. 65, no. 4, p.1458–1465, Apr. 2018.
DOI: 10.1109/TED.2018.2809475
Google Scholar
[15]
A. A. Osipov, S. E. Aleksandrov, Yu. V Solov'ev, A. A. Uvarov, and A. A. Osipov, "Etching of SiC in Low Power Inductively-Coupled Plasma," Russian Microelectronics, vol. 47, no. 6, p.427–433, 2018.
DOI: 10.1134/S1063739719010074
Google Scholar
[16]
S. H. Kuah and P. C. Wood, "Inductively coupled plasma etching of poly-SiC in SF6 chemistries," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 4, p.947–952, Jul. 2005.
DOI: 10.1116/1.1913682
Google Scholar
[17]
M. Tinani, A. Mueller, Y. Gao, E. A. Irene, Y. Z. Hu, and S. P. Tay, "In situ real-time studies of nickel silicide phase formation," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 19, no. 2, p.376–383, Mar. 2001.
DOI: 10.1116/1.1347046
Google Scholar
[18]
S. Il Cho, H. K. Park, S. An, and S. J. Hong, "Plasma Ion Bombardment Induced Heat Flux on the Wafer Surface in Inductively Coupled Plasma Reactive Ion Etch," Applied Sciences, vol. 13, no. 17, p.9533, Aug. 2023.
DOI: 10.3390/app13179533
Google Scholar