Materials Science Forum Vols. 638-642

Paper Title Page

Abstract: The suitable yield stress of Pb-0.07%Ca-1.3%Sn anodes of 6 mm thickness for copper electrowinning is achieved by means of deformation and precipitation hardening processes, being its useful life dependant of this yield stress. In such sense the objective of the present work is to optimize the precipitation hardening, finding for this purpose the best cooling conditions of the anodes in the molds and of the hot rolling temperature. The results show that increasing cooling rate of ingots from natural cooling the precipitation hardening is enhanced, with increases of 10% and 12.5 % on the yield stress and working life of the anodes respectively, and that a minimum of 45 days of ageing is necessary to reach stable conditions for the precipitation hardening, with precipitates formation as CaSn3. The hot roll temperature as not significant effect on the precipitation hardening of the anodes.
1091
Abstract: Anode-supported solid oxide fuel cells (SOFC) are manufactured at Forschungszentrum Jülich by different wet chemical powder processes and subsequent sintering at high temperatures. Recently, the warm pressing of Coat-Mix powders has been replaced by tape casting as the shaping technology for the NiO/8YSZ-containing substrate in order to decrease the demand for raw materials due to lower substrate thickness and in order to increase reproducibility and fabrication capacities (scalable process). Different processing routes for the substrates require the adjustment of process parameters for further coating with functional layers. Therefore, mainly thermal treatment steps have to be adapted to the properties of the new substrate types in order to obtain high-performance cells with minimum curvature (for stack assembly). In this presentation, the influence of selected process parameters during cell manufacturing will be characterized with respect to the resulting physical parameters such as slurry viscosity, green tape thickness, relative density, substrate strength, electrical conductivity, and shrinkage of the different newly developed substrate types. The influencing factors during manufacturing and the resulting characteristics will be presented and possible applications for the various substrates identified.
1098
Abstract: One of the factors limiting direct methanol fuel cells (DMFC) performance is the slow kinetics of methanol oxidation at the anode. The importance of the catalyst support for fuel cells has been recognized and different forms of carbon have been suggested. Single wall nanohorns (SWNH) are a new class of carbon with a similar graphitic structure of carbon nanotubes. They are self-assembling materials that produce aggregates of about 100 nm. In the present study, the comparison of the performance of a DMFC equipped with electrocatalysts supported on a commercial carbon black and on SWNH was carried out. The SWNH were synthesized by the arc discharge method in air. The deposition of the Pt and Pt/Ru catalysts on the carbon supports was accomplished by using ethylene glycol as reducing agent. The synthesized catalyst nanoparticles have a very small diameter size (ca. 2.5 nm) and they are uniformly distributed on both carbon supports. The supported electrode catalysts were tested in a DMFC and results indicate that employing SWNH is very promising showing catalytic activities 60 % higher.
1106
Abstract: Cermet anode of NiFe(9:1)-La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) (90:10 weight ratio) was studied for direct CH4 fueled SOFC operating at intermediate temperature. In case of NiFe bimetal anode, power density of the cell decreased drastically after operation under CH4 feeding condition. On the other hand, mixing Sm doped CeO2, MgO, or LSGM is effective for improving the long term stability. The cell with NiFe-LSGM anode exhibited much stable power density under CH4 feeding condition. Deposition of coke was also studied by Raman spectroscopy and no coke deposition was observed after 15 h operation. Since the surface activity of this anode is high, power density was hardly dependent on PCH4.It was found that NiFe-LSGM10 shows a high tolerance against the coke deposition under CH4 feeding condition.
1112
Abstract: The use of diesel fuel to power a solid oxide fuel cell (SOFC) presents several challenges. A major issue is deposit formation in either the external reformer, the anode channel, or within the SOFC anode itself. These deposits are generally poly-aromatic hydrocarbons (PAHs) produced either by gas-phase pyrolysis of the fuel or by catalytic reactions. In this report we describe n-hexane and ethylene pyrolysis experiments under conditions relevant to reformer or SOFC operation (τ=~1s, T=550~900°C, P~0.8 atm) to explore the potential for gas-phase reactions to produce deposit precursors. N-hexane is very reactive under these conditions and forms significant amounts of olefins (mainly ethylene) which can lead to deposits. The ethylene experiments also demonstrated that higher molecular weight species (deposit precursors) are rapidly formed. Under autothermal reforming conditions, such pyrolytic reactions are possible upstream of the catalyst bed if the fuel, air, and steam streams are not fully mixed. If part of the fuel does not mix with the oxidizer it will simply pyrolyze. At the same time, the remaining fuel fraction mixes with the entire oxidant inlet and thus creates higher local oxidant to fuel ratios than expected. Reaction of this leaner mixture can lead to temperature overshoots as more CO2 is formed. We have used a validated detailed kinetic model for ethane to explore the impact of incomplete fuel mixing on reforming performance. If only half the fuel mixes with the oxidants, this approach predicts formation of ethylene in the pyrolysis zone and excess CO2 with associated very high temperatures in the oxidation zone. This case could result in both excessive deposit formation as well as potential thermal damage to the downstream catalyst. On the other hand, assuming perfect fuel mixing under exothermic ATR conditions (τ=~1s, Ti=800°C, S/C=1.25, O/C=1.4), the gas phase reactions alone are sufficient to drive the system to equilibrium (no olefins or methane formed) due to the substantial increase in temperature. These results demonstrate the necessity for complete mixing of the fuel stream with the oxidant streams to limit both olefin production (and subsequent deposit formation) as well as the temperature overshoots. The model predictions for ethane as fuel suggest that the temperature should be kept below 500oC and the residence time in the mixing region should be minimized to avoid these undesired gas reactions. Since actual diesel fuel is expected to be even more reactive than ethane, the impact of gas-phase reactions is expected to be even greater than predicted in this study.
1118
Abstract: The study of the behaviour of fuel cells by using various in-situ and ex-situ diagnostic methods is a main topic at the German Aerospace Center (DLR). The degradation of cell components of polymer electrolyte fuel cells (PEFC, DMFC) and of solid oxide fuel cells (SOFC) are of special interest. For this purpose physical and electrochemical methods are used individually as well as in combination. In addition to routinely applied electrochemical methods different methods for locally resolved current density measurements by means of segmented cell technology and integrated temperature sensors have been developed. The latest development with segmented bipolar plates based on printed circuit boards (PCB) is used both in single PEFC cells and stacks. Furthermore, a measuring system for segmented SOFC cells has been developed allowing for the spatially resolved characterisation of cells in terms of current density/voltage characteristics, impedance spectroscopy data, operating temperature and gas composition. The paper summarises the capabilities at DLR with respect to the analysis of fuel cells’ behaviour and gives examples of analytical studies to discuss the potentials and limitations of the diagnostic methodology that is applied.
1125
Abstract: In general, hydrogen permeabilityΦ of the alloy membrane is expressed as the product of the hydrogen diffusion coefficient D and the hydrogen solution coefficient K. Therefore, to improve the hydrogen permeability efficiently, the values of K and D should be separately considered. In the present study, hydrogen absorption and permeation behaviors of the Nb19Ti40Ni41 alloy consisting of the eutectic phase are investigated by measuring pressure-composition-isotherm (PCI) and by the hydrogen flow method and compared with those of palladium. The hydrogen absorption in the Nb19Ti40Ni41 alloy does not obey the Sieverts’ law in the pressure region of 0-1.0MPa at 523K, but it shows linear relationship between the difference in the square root of hydrogen pressure and hydrogen content between 0.1 and 0.4MPa. Although the value of D for the Nb19Ti40Ni41 alloy is considerably lower than that of palladium, its high K value enhances the hydrogen permeability Φ. It is suggested that the enhancement of D by microstructural control for Nb19Ti40Ni41 alloy is effective for improvement of Φ.
1131
Abstract: We report the new structures of aluminum hydrides derived from the Al4 tetrahedral cages. We perform ab initio quantum chemical calculation for these new aluminum hydrides. Our calculation of binding energies of the new aluminum hydrides reveal that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al-H bonds decreases. We also calculate electronic stress tensor to evaluate the chemical bonds of these hydrides. As a result, we find that the bonds of the Al4 tetrahedral cage are strengthened as more hydrogen atoms are adsorbed on the aluminum hydrides. Our calculation of the potential energy surfaces and the regional chemical potential show that hydrogen atoms are likely to adsorb on bridge site at first.
1137
Abstract: Super-laminates have been attracting attention since co-authors Ueda et al. reported that Mg/Cu super-laminates showed reversible hydrogenation and dehydrogenation at 473K. The Mg/Cu super-laminates were prepared by a repetitive fold and roll method. Initial activation at 573 K led the super-laminates to absorb hydrogen at 473K. TEM observations of micro/nano-structures in the Mg/Cu super-laminates and Mg2Cu powder were performed in order to clarify the process of hydrogenation and dehydrogenation at 473K. The as-rolled Mg/Cu super-laminates have laminated structures sub-micrometer thick composed of Mg and Cu layers with dense lattice defects. The super-laminates after initial activation keep laminated structure and have uniformly distributed pores sub-micrometer in diameter. It is considered that these micro/nano-structures of Mg/Cu super-laminates lead to lower dehydrogenation temperature and better kinetics.
1143
Abstract: Nano-sized nickel particles were dispersed on multi-walled carbon nanotubes (MWCNTs) via an improved electroless deposition route using a supercritical CO2 fluid. The microstructure, chemical composition and crystallinity of the Ni-decorated CNTs were examined using a transmission electron microscope (TEM), an X-ray energy dispersive spectrometer (EDS), and an X-ray diffractometer (XRD), respectively. The analytical results indicate that, with assistance of the supercritical fluid, Ni nanoparticles with a diameter of approximately 10 nm can be uniformly dispersed on the surface of CNTs. The hydrogen storage capacity of the Ni-decorated CNTs was evaluated with a high-pressure microbalance at room temperature and under a hydrogen pressure of 6.89 MPa. The measured hydrogen adsorption amount of the Ni/CNTs nanocomposite was 1.06 wt%, which was much higher than 0.33 wt% found for the plain CNTs.
1148

Showing 181 to 190 of 656 Paper Titles