Materials Science Forum
Vol. 651
Vol. 651
Materials Science Forum
Vol. 650
Vol. 650
Materials Science Forum
Vol. 649
Vol. 649
Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum
Vol. 644
Vol. 644
Materials Science Forum
Vol. 643
Vol. 643
Materials Science Forum
Vols. 638-642
Vols. 638-642
Materials Science Forum
Vols. 636-637
Vols. 636-637
Materials Science Forum
Vol. 635
Vol. 635
Materials Science Forum
Vols. 633-634
Vols. 633-634
Materials Science Forum
Vols. 631-632
Vols. 631-632
Materials Science Forum
Vol. 630
Vol. 630
Materials Science Forum
Vols. 628-629
Vols. 628-629
Materials Science Forum Vols. 638-642
Paper Title Page
Abstract: As the service life of components is significantly influenced by the surface layer properties, namely surface roughness, surface work hardening and residual stresses, these are the focus of many investigations. As these properties can be measured experimentally in many cases only after finish of the process, simulation models can be used to explain the final process results by the interpretation of the development of the result quantities during the loading and unloading state. The developed and validated simulation model and the extended process knowledge can be used afterwards to predict process parameter combinations with optimal process results for other cutting tool-workpiece combinations without performing large and costly experimental investigations.
In the present study, the dependences of surface work hardening and residual stresses on process parameters of micro-cutting, namely cutting depth, cutting velocity and cutting edge radius are investigated by 2D finite element simulations using ABAQUS/Standard. The material behaviour of normalized AISI 1045 is described in dependence of strain, strain rate, and temperature. Chip formation is modelled by continued remeshing of the work piece. The simulation results are validated by the comparison with experimentally determined integral width and residual stress depth profiles, using x-ray diffraction method. The influence of the ploughing process, characterized by the ratio of cutting edge radius to cutting depth, on surface characteristics is well described by the simulation model.
2531
Abstract: Torsion and compression testing have been used to simulate microstructure evolution of industry processes. Additionally, mathematical modeling of the industry hot rolling processes has been carried out by several researchers. These models employed equations published in the literature describing kinetics of softening, grain size evolution and grain growth. Validation of the models was carried, in some cases, by comparing the microstructure or the average stress per pass, the latter as calculated from industry rolling mill loads. In the present work, torsion simulation and industry trial results were used to validate the mathematical model presented. Equations used in the model were mostly taken from literature and appropriate modifications were implemented concerning basically two points: a) the transfer time between CMM and SRM, a step in the production line typical for seamless rolling and rather unusual for other industry rolling processes and b) the chemical composition used in tube rolling industry where C equivalent values are usually higher than those used in the rolling of flats.
2537
Abstract: A simple mesoscale model was developed for discontinuous dynamic recrystallization. The material is described on a grain scale as a set of (variable) spherical grains. Each grain is characterized by two internal variables: its diameter and dislocation density (assumed homogeneous within the grain). Each grain is then considered in turn as an inclusion, embedded in a homogeneous equivalent matrix, the properties of which are obtained by averaging over all the grains. The model includes: (i) a grain boundary migration equation driving the evolution of grain size via the mobility of grain boundaries, which is coupled with (ii) a dislocation-density evolution equation, such as the Yoshie–Laasraoui–Jonas or Kocks–Mecking relationship, involving strain hardening and dynamic recovery, and (iii) an equation governing the total number of grains in the system due to the nucleation of new grains. The model can be used to predict transient and steady-state flow stresses, recrystallized fractions, and grain-size distributions. A method to fit the model coefficients is also described. The application of the model to pure Ni is presented.
2543
Abstract: This paper deals with the generalization to three-dimensional elasticity of the physically-based approach to non-local mechanics, recently proposed by the authors in one-dimensional case. The proposed model assumes that the equilibrium of a volume element is attained by contact forces between adjacent elements and by long-range central forces exerted by non-adjacent elements. Specifically, the long-range forces are modeled as central body forces depending on the relative displacements between the centroids of the volume elements, measured along the line connecting the centroids. Furthermore, the long-range forces are assumed to be proportional to a proper, material-dependent, distance-decaying function and to the products of the interacting volumes. Consistently with the modeling of the long-range forces as central body forces, the static boundary conditions enforced on the free surface of the solid involve only local stress due to contact forces. The model coalesces with the well-known Kröner-Eringen (KE) integral model of non-local elasticity for unbounded domains but it remains substantially different in case of bounded domain.
2549
Abstract: We analyze the distribution of grains in solid cubes of ice in terms of deterministic and stochastic 3d fractal models. We argue that the fractal dimension D or the Hurst exponent H optimally describe the void distribution in the snow sample and can be used as a parameter to describe the mechanical properties of snow at different scales.
2555
Abstract: Micro-polar and second order homogenization procedures for periodic elastic masonry are implemented to include geometric and material length scales in the constitutive equation. By the solution of the RVE equilibrium problems with properly prescribed boundary conditions the orthotropic elastic moduli of the higher order continua are obtained on the basis of an enhanced Hill–Mandel condition. A shear layer problem is analysed and the results from the heterogeneous models are compared with those ones obtained by the homogenization procedures; the second-order homogenization appears to provide better results in comparison to the micro-polar homogenization.
2561
Abstract: The paper is focused on application of multi-scale 2D CAFE method. CAFE approach consists of Cellular Automata (CA) model of microstructure development and the thermal-mechanical finite element (FE) code. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the CAFE model were validated with the experimental data for austenitic steel X3CrNi18-9. The samples were subjected to axisymmetrical hot compression test. Compression forces were recorded during the tests and flow stresses were determined using inverse method. Light microscopy and EBSD analyses were performed for the initial and final microstructures of the samples.
2567
Abstract: Substantial differences – mainly in plasticity – were found based on statistical analysis of hot rolled bars mechanical properties. Investigations presented in the paper were related to the possibility of modification of continuous bar mills used now in order to improve and stabilise plastic properties determined by the energy of breaking. The paper presents results of laboratory investigations representing processes of conventional and normalising rolling of bars from S355 steel. The experimental analysis of both rolling processes comprised assessment of actual changes occurring in the microstructure of bars, deformed acc. to suggested parameters corresponding to conventional and normalising rolling. The investigations included also the assessment of accelerated cooling after rolling influence on the microstructure of finished products.
2573
Abstract: During ageing of Fe-Cu alloys, for standard ageing conditions, peak hardness and strength is often observed after several hours. The significant strengthening is attributed to a dense distribution of very small bcc-Cu precipitates of 2-3 nm size. Using conventional numerical precipitation kinetics models for diffusion-controlled transformations, the kinetics of strengthening cannot be consistently described. One of the issues in this aspect is the fact that, after reaching peak hardness, a strong decrease in number density is observed experimentally, which cannot be explained by classical Ostwald ripening theory. In the present study, a new methodology for simulation of the copper precipitation kinetics in the early stage is suggested. The basic idea of this approach is to take into account the composition variation of the Cu-precipitates with respect to the Fe content during the precipitation reaction. The simulation results are compared to experimental data reported in literature. Consistent agreement between experiment and simulation can be achieved with the new methodology.
2579
Abstract: In this work there has been conducted theoretical analysis of the process of asymmetric rolling of plate in finishers of plate mills. On the basis of the carried out research the influence of asymmetry factor av, deformation ε and strip form h0/D on strip bend during the process of rolling has been determined. For this reason, the following resolutions have been pointed out: velocity of flow, pure shear and intensity of deformation in deformation zone.
2585