Direct Observation of Dielectric Breakdown Spot in Thermal Oxides on 4H-SiC(0001) Using Conductive Atomic Force Microscopy

Abstract:

Article Preview

The dielectric breakdown mechanism in 4H-SiC metal-oxide-semiconductor (MOS) devices was studied using conductive atomic force microscopy (C-AFM). We performed time-dependent dielectric breakdown (TDDB) measurements using a line scan mode of C-AFM, which can characterize nanoscale degradation of dielectrics. It was found that the Weibull slope () of time-to-breakdown (tBD) statistics in 7-nm-thick thermal oxides on SiC substrates was much larger for the C-AFM line scan than for the common constant voltage stress TDDB tests on MOS capacitors, suggesting the presence of some weak spots in the oxides. Superposition of simultaneously obtained C-AFM topographic and current map images of SiO2/SiC structure clearly demonstrated that most of breakdown spots were located at step bunching. These results indicate that preferential breakdown at step bunching due to local electric field concentration is the probable cause of poor gate oxide reliability of 4H-SiC MOS devices.

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Edited by:

Anton J. Bauer, Peter Friedrichs, Michael Krieger, Gerhard Pensl, Roland Rupp and Thomas Seyller

Pages:

821-824

DOI:

10.4028/www.scientific.net/MSF.645-648.821

Citation:

K. Kozono et al., "Direct Observation of Dielectric Breakdown Spot in Thermal Oxides on 4H-SiC(0001) Using Conductive Atomic Force Microscopy", Materials Science Forum, Vols. 645-648, pp. 821-824, 2010

Online since:

April 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.