Materials Science Forum
Vols. 663-665
Vols. 663-665
Materials Science Forum
Vol. 662
Vol. 662
Materials Science Forum
Vols. 660-661
Vols. 660-661
Materials Science Forum
Vol. 659
Vol. 659
Materials Science Forum
Vol. 658
Vol. 658
Materials Science Forum
Vol. 657
Vol. 657
Materials Science Forum
Vols. 654-656
Vols. 654-656
Materials Science Forum
Vol. 653
Vol. 653
Materials Science Forum
Vol. 652
Vol. 652
Materials Science Forum
Vol. 651
Vol. 651
Materials Science Forum
Vol. 650
Vol. 650
Materials Science Forum
Vol. 649
Vol. 649
Materials Science Forum
Vols. 645-648
Vols. 645-648
Materials Science Forum Vols. 654-656
Paper Title Page
Abstract: Ti-Ni-Cu shape memory alloy (SMA) thin films were sputter-deposited on heated polyimide substrates. The (Ni,Cu) rich Ti-Ni-Cu films deposited at a substrate temperature of 543 K were found to possess a high martensitic transformation temperature above room temperature over a wide range of Cu content from 7 to 23 at%, which allows stable production of actuators that operate at room temperature. Additional deposition of a Cu film onto the Ti-Ni-Cu films facilitated the soldering of wires onto the actuators and also decreased the power consumption and response time of the actuator. The force of a polyimide/Ti-Ni-Cu SMA actuator could be increased merely by increasing the thickness of the polyimide film. An actuator composed of a 125 m thick polyimide film and an 8 m thick TiNiCu film was able to lift a 13.5 g weight. Furthermore, a Ti-Ni-Cu film could be pattern etched on a polyimide film to produce a circuit. The results indicate that a polyimide/SMA film actuator is a promising simple actuator that can be produced by simply cutting out an appropriately shaped piece with scissors or by punching and then connecting the two edges to a battery by soldering.
2075
Abstract: This paper overviews some recent S&T innovations in smart materials and structures at the Australian Defence Science and Technology Organisation (DSTO) under a Corporate Enabling Research Program (CERP) on Signatures, Materials and Energy. The CERP program includes development and transitioning of technology across the maritime, air and land domains, with the major focus of the smart materials program component being to increase the safety, availability and maintainability of Defence assets. Three specific examples are provided of the smart materials and structures program, ranging across the spectrum of technology readiness from new concept phase to technology transitioning, viz.: (i) Advances in smart sensing for prognostics-based platform management; (ii) Fabrication of nanostructured and ultrafine grained materials through top-down severe plastic deformation processing of bulk materials; (iii) Innovative application of carbon nanotubes/conducting polymers as artificial muscles for low-power propulsion and control of small autonomous underwater systems. In each case, the DSTO effort is underpinned by strong university or industry linkages to deliver challenging interdisciplinary S&T.
2079
Abstract: The creeping properties of Ti44Ni47Nb9 shape memory alloy (SMA) were studied at 300°C. The connecting strength, deformation and thermal stability of the connected units were investigated under constant load and high temperature, and the units were composed of SMA pipe couplings and 16×1.5mm 1Cr18Ni9Ti tubes. The results indicated that (1) Ti44Ni47Nb9 alloys had excellent creeping properties at 400MPa stress and 300°C; (2) the connected units had good connected properties and thermal stabilities at 8445N axial tensile load and 400°C; (3) the essence of high temperature relaxation of the connected units was that the strength of SMA pipe couplings and connected tubes reduced with increasing temperature, and the pipe couplings had relative displacement to the connected tubes under axial tensile load.
2083
Design of a New Biocompatible Ti-Based Shape Memory Alloy and Its Superelastic Deformation Behaviour
Abstract: Titanium-nickel (Ti-Ni) shape memory alloys have been widely used for biomedical applications in recent years. However, it is reported that Ni is allergic and possibly carcinogenic for the human body. Therefore, it is desirable to develop new Ni-free Ti-based shape memory alloys for biomedical applications. In the present study, a new Ti-18Nb-5Mo-5Sn (wt.%) alloy, containing only biocompatible alloying elements, was designed with the aid of molecular orbital method and produced by vacuum arc melting. Both β and α″ martensitic phases were found to coexist in the alloy after ice-water quenching, indicating the martensitic transformation. The phase transformation temperatures of the Ti-18Nb-5Mo-5Sn alloy were Ms = 7.3 °C, Mf = −31.0 °C, As = 9.9 °C, and Af = 54.8 °C. Superelasticity was observed in the alloy at a temperature higher than the Af temperature. A totally recovered strain of 3.5 % was achieved for the newly designed Ti-based shape memory alloy with a pre-strain of 4 %.
2087
Abstract: This study presents a numerical model for deformation behaviour of near-equiatomic NiTi holey plates using finite element method. Near-equiatomic NiTi alloy deforms via stress-induced AM martensitic transformation, which exhibits a typical hystoelastic mechanical behaviour. In this model, the transformation stress is decomposed into two components: the hyperelastic stress, which describes the main reversible aspect of the deformation process, and the hysteretic stress, which describes the irreversible aspect of the process. It is found that with increasing the level of porosity of the holey plate, the nominal stress for the AM transformation decreases and the strain increases. In addition, the stress-strain slope over the stress plateau also increases with increasing the porosity. While the porosity level has a strong effect on global stress-strain behaviour of the holey plate, regularity of the arrangement of the holes is found to have negligible effect.
2091
Abstract: The rare earth element Gd is added to Ni53Mn22Co6Ga19 high-temperature shape memory alloy to refine the grain size and adjust the distribution of γ phase, and their microstructure, martensitic transformation behaviors, mechanical and shape memory properties were investigated. The results show that the grain size is obviously decreased and the γ phase tends to segregate at grain boundaries with increasing Gd content. Small amounts of Gd-rich phase were formed with 0.1 at.% Gd addition. The martensitic transformation temperature abruptly increases with 0.1 at.% Gd addition, then almost keeps constant with further increasing Gd content. The addition of 0.1 at.% Gd is proved to be beneficial to both tensile stress and strain before fracture, but negative to the shape-memory effect.
2095
Abstract: Shape memory alloy (SMA) wire jackets are distinct from conventional jackets for concrete members since they can provide active confinement easily. The applications of SMAs in civil engineering are on the increase since SMAs show unique properties of shape memory effect and superelastic behavior. Especially, the seismic application of SMAs for confining concrete becomes a hot issues in recent. Thus, this study conducts cyclic compressive tests of concrete cylinders jacketed by shape memory alloy (SMA) wires which can provide active confinement due to shape memory effect. Monotonic compressive tests provide only the peak strength and the ultimate strain for confined concrete. However, confined concrete is exposed to the repeating of loading and unloading during an earthquake. Also, this study performs the same tests for concrete cylinders jacketed by steel jackets which provide only passive confinement and the results are compared to those of SMA wire jackets. This study provides the basic information of concrete behavior confined by active or passive external jackets.
2099
Abstract: Deformation behavior and texture development of NiMnGa ferromagnetic shape memory alloy (FSMA) particles embedded polymer composites were investigated by compression tests and X-ray diffraction pole-figure analysis (XRD-PF). Both the NiMnGa/silicone and NiMnGa/epoxy composites exhibited a characteristic three-stage deformation which is often seen in shape memory alloys due to martensite variant reorientation. XRD-PF revealed that (004) texture was developed in the compressed NiMnGa/silicone due to the retention of martensite variant reorientation. On the other hand, significant texture change was not recognized in the compressed NiMnGa/epoxy. Rearranged martensite variants was kept after unloading in silicone matrix having low Young's modulus, but reverse reorientation occurred in epoxy matrix with high Young's modulus. The rearrangement behavior of martensite variants is strongly affected by elastic properties of matrix.
2103
Abstract: The shape memory effect (SME) and magnetic shape memory effect (MSME) Fe-Pd thin film are using the film curvature method. The corresponding residual stress change due to theSME and MSME in Fe-Pd film is measuredduring thermal cycling and magnetic field changing. AFe-Pd thin film with a lateral composition gradient is deposited onto micromachined x7 cantilever beam arraysubstrate,such that each of the cantilever beams is coated with a film of different composition.There is abrupt stress change in only .1 at % Pd as the temperature of the film is cycled, and the corresponding stress change was measured as 0.16 GPa. The film with .4 at % Pd showsthe abrupt stress change at 0.7 Tesla, which means that the composition has the MSME.
2107
Abstract: The main drawbacks of SMA actuators are a slow response and a waste of electric power. The power should be continuously supplied for SMA elements to remain in the austenite state until the actuator begins to move to the other position. The problems are more serious when batteries and thick SMA elements are used. We develop a new SMA actuator which consumes little energy and responds very quickly. The actuator consists of a specially designed bias spring structure, and two SMA elements which exert the force in opposite direction to each other. The bias spring, unlike a common spring which has one stable position, has two stable positions. A SMA1, for instance, contracts on heating by electricity, the actuator takes one stable configuration. No further power supply is necessary to maintain the stable position, providing enough time for the SMA1 to cool. When the other SMA2 is heated, it contracts with enough force to move the bias spring and to expand the already-cooled SMA1. Power supply stops immediately after the actuator takes the other stable configuration, causing power saving and quick response.
2111