Materials Science Forum
Vol. 930
Vol. 930
Materials Science Forum
Vol. 929
Vol. 929
Materials Science Forum
Vol. 928
Vol. 928
Materials Science Forum
Vol. 927
Vol. 927
Materials Science Forum
Vol. 926
Vol. 926
Materials Science Forum
Vol. 925
Vol. 925
Materials Science Forum
Vol. 924
Vol. 924
Materials Science Forum
Vol. 923
Vol. 923
Materials Science Forum
Vol. 922
Vol. 922
Materials Science Forum
Vol. 921
Vol. 921
Materials Science Forum
Vol. 920
Vol. 920
Materials Science Forum
Vol. 919
Vol. 919
Materials Science Forum
Vol. 918
Vol. 918
Materials Science Forum Vol. 924
Paper Title Page
Abstract: The effect of local lifetime control by proton irradiation on the OCVD response of a 10 kV SiC PiN diode was investigated. Carrier lifetime was reduced locally by irradiation with 800 keV protons at fluences up to 1x1011 cm-2. Radiation defects were characterized by DLTS and C-V profiling; excess carrier dynamics were measured by the OCVD and analyzed using the calibrated device simulator ATLAS from Silvaco, Inc. Results show that proton implantation followed by low temperature annealing can be used for controllable local lifetime reduction in SiC devices. The dominant recombination centre is the Z1/2 defect, whose distribution can be set by irradiation energy and fluence. The local lifetime reduction, which improves diode recovery, can be monitored by OCVD response and simulated using the SRH model accounting for the Z1/2 defect.
436
Abstract: In this paper, the application of a high temperature thermal oxidation and annealing process to 4H-SiC PiN diodes with 35 μm thick drift regions is explored, the aim of which was to increase the carrier lifetime in the 4H-SiC. Diodes were fabricated using 4H-SiC material and underwent a thermal oxidation in dry pure O2 at 1550◦C followed by an argon anneal at the same temperature. Reverse recovery tests indicated a carrier lifetime increase of around 42% which is due to increase of excessive minority carriers in the drift region. The switching results illustrate that the use of this process is a highly effective and efficient way of enhancing the electrical characteristics of high voltage 4H-SiC bipolar devices.
440
Abstract: In this work, we examined the oxidation growth rates of the (0001) Si-face and (11−20) a-faces of 4H-SiC by carrying out oxidation in the 850°C-950 °C temperature range in a plasma afterglow furnace for application to trench MOSFETs. At 900 °C, this method results in almost equal oxide thickness on the Si-face and a-face which would nominally correspond to trench bottom and sidewalls in trench devices. Our results indicate that after NO annealing, the electronic properties of the plasma oxidized SiO2/SiC interface is comparable to control samples with gate oxides formed by dry oxidation at 1150 °C followed by NO annealing. Next, the effect of reactive ion etching (RIE) of 4H-SiC surfaces prior to gate oxidation was investigated using planar 4H-SiC MOS capacitors. Our experiments show that oxidation followed by NO annealing of surfaces with smooth morphology following the RIE step, results in similar interface charge and trap densities as MOS capacitors which did not undergo the RIE etching.
444
Abstract: The characteristics of near interface electron and hole traps in n-type 4H-SiC MOS capacitors with and without nitric oxide (NO) passivation have been systematically investigated. The hysteresis of the bidirectional capacitance-voltage (C-V) and the shift of flat band voltage (Vfb) caused by bias stress (BS) with and without ultraviolet light (UVL) irradiation are used for studying the influence of near interface electron traps (NIETs) and near interface hole traps (NIHTs). Compared with Ar annealed process, NO passivation can effectively reduce the density of NIETs, but induce excess NIHTs in the SiC MOS devices. What’s worse is that part of the trapped hole cannot be released easily from the NIHTs in the NO annealed sample, which may act as the positive fixed charge and induce the negative shift of threshold voltage.
449
Abstract: For the improvement of a SiC/SiO2 interface of SiC-MOSFET, we examined O2 partial pressure (PO2) controlled (OPC) oxidation process for the gate oxide formation. The OPC oxidation process has a potential to reduce interface state density (Dit) at SiC/SiO2 interface by using appropriate PO2 and oxidation temperature. However the process requires rapid thermal annealing which is not suitable for mass production. Thus we investigated the process using furnace. First, we optimized the OPC oxidation process for the furnace to realize low interface defect density. Secondly, we confirmed that reduction of Dit was determined by desorption of excess carbon in OPC process by the C–ψs measurement and X-ray photoelectron spectroscopy. Finally, a DMOSFET was fabricated using optimized OPC process. We measured the transfer characteristics, and found that the drain current with OPC was larger than without OPC process.
453
Abstract: The gate insulator process for SiC-MOSFET was examined and high-quality interface was realized by employing the pre-annealing process before high-temperature N2 annealing. The pre-annealing evidently activated the interface to introduce nitrogen, and then field-effect mobility exceeded 50 cm2/Vs. The fabricated sample also demonstrated superior bias temperature instability (BTI) and excellent breakdown electric field of 11.7 MV/cm.
457
Abstract: We investigated the impact of high-temperature H2/Ar mixture gas treatment of 4H-SiC(0001) surfaces before SiO2 deposition on the electrical properties of SiO2/SiC interfaces. Physical characterizations revealed that the SiC surface treated by the H2/Ar mixture gas exhibited a (√3×√3)R30° structure composed of Si-O bonds, indicating that a well-ordered and stable silicate adlayer was formed by the treatment to passivate SiC(0001) surface. Electrical defects at the CVD-grown SiO2/SiC interface was significantly reduced by the treatment. Consequently, a peak electron mobility in SiC-MOSFETs with the deposited gate oxides was enhanced to 24.9 cm2/Vs.
461
Abstract: Effects of CF4 etching on 4H-SiC MOS capacitor were investigated. Fluorine atoms were introduced to surface of 4H-SiC using CF4 dry etching process as a surface treatment, and 4H-SiC MOS capacitors with dry-oxide were fabricated with this treatment. As the results, breakdown electric field of the MOS capacitors was increased and variation of the characteristics became lower than that of MOS capacitor without this treatment.
465
Abstract: In this work, we study the effects of NO anneals on the interface of 4H-SiC MOSFETs via spin dependent charge pumping, an electrically detected magnetic resonance technique. We make measurements at high and ultra-low resonance frequencies. Our results indicate that the NO anneals both change the silicon vacancy energy levels as well as induces disorder at the interface. In addition, our results indicate that the changes in energy levels involve N atoms very close to VSi sites.
469
Abstract: We present a temperature-dependence electrical characterization of the oxide/semiconductor interface in MOS capacitors with a SiO2 layer deposited on 4H-SiC using dichlorosilane and nitrogen-based vapor precursors. The post deposition annealing process in N2O allowed to achieve an interface state density Dit 9.0×1011cm-2eV-1 below the conduction band edge. At room temperature, an electron barrier height (conduction band offset) of 2.8 eV was measured using the standard Fowler-Nordheim tunneling model. The electron conduction through the SiO2 insulating layer was evaluated by studying the experimental temperature dependence of the gate current. In particular, the Fowler-Nordheim electron barrier height showed a negative temperature coefficient (dφB/dT = - 0.98 meV/°C), which is very close to the expected value for an ideal SiO2/4H-SiC system. This result, obtained for deposited SiO2 layers, is an improvement compared to the values of the temperature coefficient of the Fowler-Nordheim electron barrier height reported for thermally grown SiO2. In fact, the smaller dependence of φB on the temperature observed in this work represents a clear advantage of our deposited SiO2 for the operation of MOSFET devices at high temperatures.
473