Key Engineering Materials
Vol. 312
Vol. 312
Key Engineering Materials
Vols. 309-311
Vols. 309-311
Key Engineering Materials
Vols. 306-308
Vols. 306-308
Key Engineering Materials
Vols. 304-305
Vols. 304-305
Key Engineering Materials
Vols. 302-303
Vols. 302-303
Key Engineering Materials
Vol. 301
Vol. 301
Key Engineering Materials
Vols. 297-300
Vols. 297-300
Key Engineering Materials
Vols. 295-296
Vols. 295-296
Key Engineering Materials
Vols. 293-294
Vols. 293-294
Key Engineering Materials
Vols. 291-292
Vols. 291-292
Key Engineering Materials
Vol. 290
Vol. 290
Key Engineering Materials
Vols. 288-289
Vols. 288-289
Key Engineering Materials
Vol. 287
Vol. 287
Key Engineering Materials Vols. 297-300
Paper Title Page
Abstract: A novel synthesis procedure of multifunctional Ti based alloy was suggested under
containerless processing using an electromagnetic levitation furnace. In this method, necessary condition to synthesize the alloys with ability of a dislocation-free plastic deformation was determined. That was supported by microstructural observation, hardness measurement and X-ray analysis of the alloys solidified from several undercoolings. The maximum undercooling of the alloy melt was up to 120K. Synthesized alloys that met the condition showed refined microstructures, increase of d-value of (110) plane and a tiny deviation of hardness by cold-working Others partially occurred stress-induced transformation.
495
Abstract: To estimate the volume fraction of martensite induced in 304ss type austenitic stainless steel during tensile deformation, the electric resistance of the specimen was measured using the four-point-probes method at the temperatures of 77, 196 and 293K during the deformation. The magnetic force of the deformed specimen was also measured using a permanent magnet to determine the strain at which the martensite was induced initially in the specimen. The parallelepiped model was
suggested to separate the effects of the deformation and transformation on the electric resistivity because the resistivity was influenced by the evolution of the martensite and the growth of the defect in the matrix at a constant temperature. The parallelepiped model consisted of m columns with n pieces of the cubic element and was assumed to be a group of small electric resistors. The volume fraction of the martensite estimated using the measured resistivity and the model was compared with the experimental results reported by other researchers and then it was clarified that the volume fraction of the martensite estimated by the model was in agreement with the volume fraction measured by the experiment.
500
Abstract: Nb-base in-situ composites, which have the base composition of Nb-18Si-5Mo-5Hf, have been investigated in microstructure, hardness (Hv*), Young’s modulus (E), tensile properties and fracture behavior. The microstructures of all composites examined consist of NbSS matrix and Nb5Si3 secondary phases. No secondary phase such as Nb2C appeared. The crystal structure of Nb5Si3 is Mn5Si3-type when C replaces 2mol%-Nb, though typical structures of a (Cr5B3-type) and b (W5Si3-type) as in the base composition when W replaces. W addition is effective in increasing Hv* and E of both phases as expected. However, C alloying is somewhat beneficial only in Nb5Si3 with a noticeable negative effect in NbSS. Furthermore, the composite exhibits the highest strength at 1473 K, while the base composite exhibits the highest at room temperature. The fracture behavior is
independent of the compositions and it is controlled by cleavage fractures of Nb5Si3, decohesion of NbSS/Nb5Si3 interface and ductile rupture of NbSS depending on the testing temperatures.
507
Abstract: This study deals with the indentation method of measuring residual stress in structural ceramics. First we investigate the appropriate pretreatment for measuring fracture toughness (basis value, KC) while avoiding any influence from residual stress, which is important when estimating residual stress using the indentation method. Based on the fracture toughness value, the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics are estimated using the indentation method. Phase transformation is a problem when estimating residual stress using the indentation method with ZrO2 ceramics. Residual stresses in Al2O3 and Si3N4 can be largely eliminated by annealing the specimen after hand grinding. Consequently, it is thought that this treatment method is effective for determining the basis value KC. The estimated residual stress values in Al2O3 and Si3N4 obtained by the indentation method at 98 N corresponded closely to the values obtained wih X-rays. The residual stress value obtained by the indentation method for ZrO2 was close to the value obtained through the X-ray method, when the indentation load was 294 N. When estimating the residual stress in ZrO2 using the indentation method, the influence of the phase transformation caused by the indentation is added onto the original residual stress, when the indentation is small. The influence becomes smaller
when the indentation load is large. If the applied indentation load is between 294 N and 490 N, the indentation method is effective for estimating the residual stresses in Al2O3, Si3N4 and ZrO2 ceramics.
515
Abstract: A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si
substrate.
521
Abstract: Strength evaluation method for MEMS micromirror has been proposed. Pure bending and combined loading tests have been performed and torsion strength has been estimated from those results. Two-parameter Weibull distribution was used to evaluate the fractured stresses estimated from FEM model. There exists the difference in strength between pure bending and combined loading. From the load factor analysis, it is found that both geometry and stress distribution have to be considered to estimate the strength of MEMS since flaw population is non-uniformly distributed. It is also found torsional strength can be estimated on the safe side by using the result of combined loading test. From the comparison between two kinds of specimen fabricated by different etching conditions, it is found that the fracture strength is greatly affected by the amount of etching damage (notching).
527
Abstract: ZnO is an n-type semiconductor having a hexagonal wurzite structure. ZnO exhibits good piezoelectric, photoelectric and optical properties and might be a good candidate for an electroluminescence device like an UV laser diode. But the important problems, such as substrate kinds and substrate temperature are raised its head, so they need to optimize deposit condition. Because these devices are very small and films are very thin, those are often prepared in limited quantities and
shapes unsuitable for the extensive mechanical test. In this present work, ZnO thin films are prepared on the glass, GaAs (100), Si (111) and Si (100) substrates at different temperatures by the pulsed laser deposition (PLD) method. ZnO was evaluated in term of crystalline through X-ray diffraction (XRD),
mechanical properties such as hardness, elastic modulus through nano-indenter. XRD measurements indicate that the substrate temperature of 200-500, 200-500, 300-500, and 300-500oC was the optimized conditions of crystalline for the glass, GaAs (100), Si (111), and Si (100) substrates, respectively. In spite of the films deposited on the different substrates, the films always show (002) orientation at the optimized conditions. Mechanical properties such as hardness and elastic modulus are influenced substrate crystallization. In case of Si (111) substrate, hardness and elastic modulus are about 10, 150GPa, respectively.
533
Abstract: Recently, application of semiconductor sensors has widely spreaded into various industries becasuse those have several merits like easy miniaturization and batch production etc. But external conditions such as thermal and repetitive load have a bad effect on sensors’s lifetime. Therefore, lots of studies related with the fatigue of microelectromechnical systems (MEMS) have been conducted. Especially, this paper was focused on fatigue life of aluminum interconnect in the supporting
structure of sensor under cyclic thermal load and on the approximation equation defining the critical temperature to ensure required operating life using FEM simulation.
539
Abstract: Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems (MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an axial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.
545
Abstract: Fracture behaviors of silicon films were evaluated by microtensile methods. We fabricated two types of specimens using surface micromachining, one for a test device for microtensile testing only and the other for a microtensile-compatible resonating device driven by alternating electrostatic force. The piezoelectric-driven uniaxial stress-strain measurement system was designed to evaluate the mechanical properties of thin films. We used UV adhesive to grip the device to the microtensile system, and the grip was made of UV-transparent glass in order to cure the underlying UV adhesive layer. To assess fracture toughness, we used newly proposed methods combining resonance frequency and microtensile methods. The fracture strength of single- and polycrystalline silicon showed dependence on geometry and doping condition. By varying the geometry, we analyzed the effect of the CMP side and the dry-etched side on changes in the mean fracture strength. Atomic force microscopy observation showed that the larger flaws of the dry-etched side were significant in decreasing the mean fracture strength. Fracture toughness based on fracture mechanics with a precrack was evaluated by newly proposed methods combining resonance frequency and microtensile techniques. The measured toughness was independent of specimen geometry but dependent on doping condition. The measured fracture toughness of notched specimens was 33% higher than that of pre-cracked specimens, even though the notch radius was as small as 1.4µm. The effects of notch-tip radius and doping on fracture toughness of silicon film were also analyzed.
551