Nitrogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC Interface

Abstract:

Article Preview

Post-oxidation anneals that introduce nitrogen at the SiO2/4H-SiC interface have been most effective in reducing the large interface trap density near the 4H-SiC conduction band-edge for (0001) Si face 4H-SiC. Herein, we report the effect of nitridation on interfaces created on the (11 20) a-face and the (0001) C-face of 4H-SiC. Significant reductions in trap density (from >1013 cm-2 eV-1 to ~ 1012 cm-2 eV-1 at EC-E ~0.1 eV) were observed for these different interfaces, indicating the presence of substantial nitrogen susceptible defects for all crystal faces. Annealing nitridated interfaces in hydrogen results in a further reduction of trap density (from ~1012 cm-2 eV-1 to ~5 x 1011 cm-2 eV-1 at EC-E ~0.1 eV). Using sequential anneals in NO and H2, maximum field effect mobilities of ~55 cm-2 V-1s-1 and ~100 cm-2 V-1s-1 have been obtained for lateral MOSFETs fabricated on the (0001) and (11 20) faces, respectively. These electronic measurements have been correlated to the interface chemical composition.

Info:

Periodical:

Materials Science Forum (Volumes 527-529)

Edited by:

Robert P. Devaty, David J. Larkin and Stephen E. Saddow

Pages:

949-954

DOI:

10.4028/www.scientific.net/MSF.527-529.949

Citation:

S. Dhar et al., "Nitrogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC Interface", Materials Science Forum, Vols. 527-529, pp. 949-954, 2006

Online since:

October 2006

Export:

Price:

$35.00

[1] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman and R. A. Weller: Applied Physics Letters, 76, (2000), p.1713.

[2] G. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, R. K. Chanana, S. T. Pantelides, L. C. Feldman and R. A. Weller: Applied Physics Letters, 77, (2000), p.3601.

[3] H. -F. Li, S. Dimitrijev, H. B. Harrison and D. Sweatman: Applied Physics Letters, 70, (1997), p. (2028).

[4] L. A. Lipkin, M. K. Das and J. W. Palmour: Materials Science Forum, 389-393, (2002), p.985.

[5] R. Schörner, P. Friedrichs, D. Peters and D. Stephani: IEEE Electron Device Letters, 20, (1999), p.241.

[6] I. C. Vickridge, I. Trimaille, J. -J. Ganem, S. Rigo, C. Radtke, I. J. R. Baumvol and F. C. Stedile: Physical Review Letters, 89, (2002), p.256102.

[7] Y. Song, S. Dhar, L. C. Feldman, G. Chung and J. R. Williams: Journal of Applied Physics, 95, (2004), p.4953.

[8] V. V. Afanasev, M. Bassler, G. Pensl and M. Schulz: Physica Status Solidi A, 162, (1997), p.321.

[9] K. Fukuda, W. J. Cho, K. Arai, S. Suzuki, J. Senzaki and T. Tanaka: Applied Physics Letters, 77, (2000), p.866.

[10] S. Dhar, L. C. Feldman, S. Wang, T. Isaacs-Smith and J. R. Williams: Journal of Applied Physics, 98, (2005), p.14902.

[11] W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins, W. C. Mitchel and J. R. Williams: Applied Physics Letters, 85, (2004), p.3495.

[12] K. -C. Chang, Y. Cao, L. M. Porter, J. Bentley, S. Dhar, L. C. Feldman and J. R. Williams: Journal of Applied Physics, 97, (2005), p.1.

[13] C. Virojanadara and L. I. Johansson: Journal of Physics Condensed Matter, 16, (2004), p.1783.

[14] J. B. Casady and R. W. Johnson: Solid-State Electronics, 39, (1996), p.1409.

[15] K. McDonald, R. A. Weller, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin and J. R. Williams: Journal of Applied Physics, 93, (2003), p.2719.

[16] S. Dhar, L. C. Feldman, K. -C. Chang, Y. Cao, L. M. Porter, J. Bentley and J. R. Williams: Journal of Applied Physics, 97, (2005), p.1.

[17] S. Dhar, Ph.D. dissertation, Vanderbilt University, (2005).

[18] K. Fukuda, S. Suzuki, T. Tanaka and K. Arai: Applied Physics Letters, 76, (2000), p.1585.

[19] J. Senzaki, K. Fukuda, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki and K. Arai: Materials Science Forum, 389-393, (2002), p.1061.

In order to see related information, you need to Login.