Nitrogen and Hydrogen Induced Trap Passivation at the SiO2/4H-SiC Interface

Article Preview

Abstract:

Post-oxidation anneals that introduce nitrogen at the SiO2/4H-SiC interface have been most effective in reducing the large interface trap density near the 4H-SiC conduction band-edge for (0001) Si face 4H-SiC. Herein, we report the effect of nitridation on interfaces created on the (11 20) a-face and the (0001) C-face of 4H-SiC. Significant reductions in trap density (from >1013 cm-2 eV-1 to ~ 1012 cm-2 eV-1 at EC-E ~0.1 eV) were observed for these different interfaces, indicating the presence of substantial nitrogen susceptible defects for all crystal faces. Annealing nitridated interfaces in hydrogen results in a further reduction of trap density (from ~1012 cm-2 eV-1 to ~5 x 1011 cm-2 eV-1 at EC-E ~0.1 eV). Using sequential anneals in NO and H2, maximum field effect mobilities of ~55 cm-2 V-1s-1 and ~100 cm-2 V-1s-1 have been obtained for lateral MOSFETs fabricated on the (0001) and (11 20) faces, respectively. These electronic measurements have been correlated to the interface chemical composition.

You might also be interested in these eBooks

Info:

[1] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, S. T. Pantelides, L. C. Feldman and R. A. Weller: Applied Physics Letters, 76, (2000), p.1713.

Google Scholar

[2] G. Chung, C. C. Tin, J. R. Williams, K. McDonald, M. Di Ventra, R. K. Chanana, S. T. Pantelides, L. C. Feldman and R. A. Weller: Applied Physics Letters, 77, (2000), p.3601.

DOI: 10.1063/1.1318229

Google Scholar

[3] H. -F. Li, S. Dimitrijev, H. B. Harrison and D. Sweatman: Applied Physics Letters, 70, (1997), p. (2028).

Google Scholar

[4] L. A. Lipkin, M. K. Das and J. W. Palmour: Materials Science Forum, 389-393, (2002), p.985.

Google Scholar

[5] R. Schörner, P. Friedrichs, D. Peters and D. Stephani: IEEE Electron Device Letters, 20, (1999), p.241.

Google Scholar

[6] I. C. Vickridge, I. Trimaille, J. -J. Ganem, S. Rigo, C. Radtke, I. J. R. Baumvol and F. C. Stedile: Physical Review Letters, 89, (2002), p.256102.

DOI: 10.1103/physrevlett.89.256102

Google Scholar

[7] Y. Song, S. Dhar, L. C. Feldman, G. Chung and J. R. Williams: Journal of Applied Physics, 95, (2004), p.4953.

Google Scholar

[8] V. V. Afanasev, M. Bassler, G. Pensl and M. Schulz: Physica Status Solidi A, 162, (1997), p.321.

DOI: 10.1002/1521-396x(199707)162:1<321::aid-pssa321>3.0.co;2-f

Google Scholar

[9] K. Fukuda, W. J. Cho, K. Arai, S. Suzuki, J. Senzaki and T. Tanaka: Applied Physics Letters, 77, (2000), p.866.

Google Scholar

[10] S. Dhar, L. C. Feldman, S. Wang, T. Isaacs-Smith and J. R. Williams: Journal of Applied Physics, 98, (2005), p.14902.

Google Scholar

[11] W. Lu, L. C. Feldman, Y. Song, S. Dhar, W. E. Collins, W. C. Mitchel and J. R. Williams: Applied Physics Letters, 85, (2004), p.3495.

Google Scholar

[12] K. -C. Chang, Y. Cao, L. M. Porter, J. Bentley, S. Dhar, L. C. Feldman and J. R. Williams: Journal of Applied Physics, 97, (2005), p.1.

Google Scholar

[13] C. Virojanadara and L. I. Johansson: Journal of Physics Condensed Matter, 16, (2004), p.1783.

Google Scholar

[14] J. B. Casady and R. W. Johnson: Solid-State Electronics, 39, (1996), p.1409.

Google Scholar

[15] K. McDonald, R. A. Weller, S. T. Pantelides, L. C. Feldman, G. Y. Chung, C. C. Tin and J. R. Williams: Journal of Applied Physics, 93, (2003), p.2719.

Google Scholar

[16] S. Dhar, L. C. Feldman, K. -C. Chang, Y. Cao, L. M. Porter, J. Bentley and J. R. Williams: Journal of Applied Physics, 97, (2005), p.1.

Google Scholar

[17] S. Dhar, Ph.D. dissertation, Vanderbilt University, (2005).

Google Scholar

[18] K. Fukuda, S. Suzuki, T. Tanaka and K. Arai: Applied Physics Letters, 76, (2000), p.1585.

Google Scholar

[19] J. Senzaki, K. Fukuda, K. Kojima, S. Harada, R. Kosugi, S. Suzuki, T. Suzuki and K. Arai: Materials Science Forum, 389-393, (2002), p.1061.

DOI: 10.4028/www.scientific.net/msf.389-393.1061

Google Scholar