Characterization of Schottky Diodes on 4H-SiC with Various Off-Axis Angles Grown by Sublimation Epitaxy

Article Preview

Abstract:

The effects of basal-plane defects on the performance of 4H-SiC Schottky diodes using a Ni electrode are demonstrated. Systematic characterization was performed using 4H-SiC epitaxial layers grown by sublimation epitaxy on substrates with various off-axis angles. As the off-axis angle increases, the ideality factor of the current-voltage characteristics increases, and the Schottky barrier height decreases, corresponding to an increase in the number of basal-plane defects. The reverse-bias current degrades for high off-axis samples. These results indicate that basal-plane defects degrade the device performance. Schottky diodes that possesses good characteristics were obtained for samples with low off-axis angles (2o- and 4o-off samples).

You might also be interested in these eBooks

Info:

[1] H. Fujiwara, T. Kimoto, T. Tojo and H. Matsunami, Appl. Phys. Lett. 87 (2005) 051912.

Google Scholar

[2] S. Nishino, K. Matsumoto, Y. Chen and Y. Nishio, Materials Science and Engineering B61-62 (1999) 121.

Google Scholar

[3] R. Yakimova, M. Syväjärvi, R.R. Ciechonski and Q. Wahab, Mater. Sci. Forum 457-460 (2004) 201.

DOI: 10.4028/www.scientific.net/msf.457-460.201

Google Scholar

[4] T. Furusho, S.K. Lilov, S. Ohshima and S. Nishino, Jpn. J. Appl. Phys. 40 (2001) 6737.

Google Scholar

[5] S. Tumakha, D.J. Ewing, L. M Porter, Q. Wahab, X. Ma, T.S. Sundharshan and L.J. Brillson, Appl. Phys. Lett. 87 (2005) 242106.

DOI: 10.1063/1.2141719

Google Scholar

[6] B.J. Skromme, E.L. Luckowski, K. Moore, M. Bhatnagar, C.E. Weitael, T. Gehoski and D. Ganser, J. Electron. Mater. 29 (2000) 376.

Google Scholar

[7] K. Kojima, T. Ohno, T. Fujimoto, M. Katsuno, N. Ohtani, J. Nishio, T. Suzuki and T. Tanaka, Y. Ishida, T. Takahashi, and K. Arai, Appl. Phys. Lett. 81 (2002) 2975. 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6.

DOI: 10.1063/1.1512956

Google Scholar

[10] [20] [30] [40] [50] [2] o off Yield (%) Barrier Height (eV) 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6.

Google Scholar

[10] [20] [30] [40] [50] [4] o off Yield (%) 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6.

Google Scholar

[10] [20] [30] [40] [50] [6] o off Yield (%) 1. 0 1. 1 1. 2 1. 3 1. 4 1. 5 1. 6.

Google Scholar

[10] [20] [30] [40] [50] [8] o off Yield (%) Figure 5 Dependence of Schottky barrier height on the off-axis angle of the substrate 1. 0 1. 1 1. 2 1. 3.

Google Scholar

[10] [20] [30] [40] [50] [2] o off Yield (%) Ideality Factor 1. 0 1. 1 1. 2 1. 3.

Google Scholar

[10] [20] [30] [40] [50] [4] o off Yield (%) 1. 0 1. 1 1. 2 1. 3.

Google Scholar

[10] [20] [30] [40] [50] [6] o off Yield (%) 1. 0 1. 1 1. 2 1. 3.

Google Scholar

[10] [20] [30] [40] [50] [8] o off Yield (%) Figure 6 Dependence of ideality factor on the off-axis angle of the substrate -7 -6 -5 -4 -3 -2 -1 0 1 2 3.

Google Scholar

[20] [40] [60] [80] 100.

Google Scholar

[2] o off Yield (%) Log(IL(A/cm.

Google Scholar

[2] ) -7 -6 -5 -4 -3 -2 -1 0 1 2 3.

Google Scholar

[20] [40] [60] [80] 100.

Google Scholar

[4] o off Yield (%) -7 -6 -5 -4 -3 -2 -1 0 1 2 3.

Google Scholar

[20] [40] [60] [80] 100.

Google Scholar

[6] o off Yield (%) -7 -6 -5 -4 -3 -2 -1 0 1 2 3.

Google Scholar

[20] [40] [60] [80] 100.

Google Scholar

[8] o off Yield (%) Figure 7 Dependence of reverse-bias current density at.

Google Scholar

[10] V on the off-axis of the substrate.

Google Scholar