Materials Science Forum Vols. 660-661

Paper Title Page

Abstract: The aim of this work is to evaluate the influence of the external heating in the morphological and structural characteristics of the alumina powder prepared by combustion reaction. It was evaluated different types of external heating: muffle oven, microwave oven and ceramic plate with electrical spiral resistance. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric proportion (Φe = 1). During the synthesis parameters such as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluate by XRD, particle size distribution, SEM and nitrogen adsorption (BET). The results showed the production of -alumina as unique phase and formed by agglomerates with irregular plate shape of thin particles for all studied conditions. The powders prepared by electrical oven presented small particle size, with narrow agglomerates size distribution.
58
Abstract: This work presents a comparative study of microstructural and electrical properties of polycrystalline material from two different Cu-Ni alloys: Cu-Ni-Pt and Cu-Ni-Al. The first one of them was produced in electric furnace with voltaic arc and the other was produced by powder metallurgy. The microstructure of the samples was studied by optical microscopy, Vickers micro hardness and x rays powder diffraction. Their electrical conductivity was measured with a milliohmeter Agilent (HP) 4338B. Refinements of the crystalline structure of the samples were performed by the Rietveld method, using the refinement program GSAS. The refinement results and Fourier differences calculations indicate that the copper matrix structure presents not significant distortions by the used amounts of the other metal atoms. In both cases a sequence of thermo mechanical treatments was developed with the intention of increasing the hardness maintaining the electrical conductivity of the alloys. The refinements also allowed a study of the dependence of the micro-structure and the thermo mechanical treatments of the samples. Acknowledgments: Mackpesquisa, CAPES.
63
Abstract: New nuclear fuel material with high density in uranium is envisaged for intense irradiation research reactors. The alloy U-Mo has been researched as a feasible candidate to be used in such reactors. This nuclear fuel is conceived to be used encapsulated in aluminum matrix. Nevertheless, there are interaction products of U-Mo/Al which form porosity during irradiation, leading to routine operation harms in research reactors. This interaction is due to solid solution interdiffusion of species, mainly of Al towards U-Mo region forming reaction products. This interaction could be studied by on-pile method, observing the occurrence of formed products during irradiation, but this method is costly and used only for long term experiments in very few reactors in the world. For this, several out-of-pile studies using heat treatments of diffusion pairs are carried out at adequate temperatures and times, just below the -phase eutectoid temperature to simulating the interdiffusion and formation U-Mo-Al phases. In the present study, it was employed a new developed assembling method to prepare interdiffusion pairs by immersing sliced U-10Mo sticks inside molten Al. These samples are made by induction furnace, in temperature range ~660-670 °C, under controlled argon atmosphere, in order to entrap molten Al around U-Mo sticks and so keeping this entangled structure after solidification. The interdiffusion pairs are then cut and prepared for treatments. This novel sample preparation guarantees full contact between the U-Mo and Al without oxidation contact, creating so, the ideal conditions for interdiffusion investigation of the interfaces of Al/U-Mo. Preliminary results to study interaction products where achieved by heat treatments during 5h at 550°C. Observations and calculations from SEM/EDS microstructures and XRD diffractograms revealed few microns interaction layer between the matrix and the fuel material, resembling phases reported in the literature for the interaction products between U-Mo-Al. This layer is mainly composed by Al and U, Mo phases, probably (U, Mo)Al3 and phases containing Si, as U3Si5 and a proposed one Al2Si3U3 that fits better to XRD spectrum of experimented diffusion pairs.
69
Abstract: Drying being one of the most energy-intensive operations is of great importance in the fertilizer industry. Rotary drums are often used for drying in fertilizer industry. This dryer consists basically of a cylindrical shell inclined at a small angle to the horizontal. Wet feed is introduced into the upper end of the dryer and the dried product withdrawn at the lower end. The inside of the shell is equipped with lifting flights. In the present work, the drying of granulated fertilizers (GTSP) using a concurrent rotary dryer was investigated experimentally. The fluid dynamics aspects and its influence on dryer performance were analyzed. The results obtained show that the concurrent dryer residence time and hold-up were lower than the ones of the counter-current dryer. The drying rate of the two dryer’s configurations was very similar, but the counter-current configuration removes a larger quantity of water from the particles of fertilizers.
76
Abstract: The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product.
82
Abstract: The influence of the clay particle morphology on the structural consolidation process associated with high temperature sintering was studied. By computer modeling, the different degrees of packing related to the distinct shapes naturally assumed by the particle clays as well as the consolidation conditions, based on solid sate reactions and surface diffusion were simulated. The model was compared with experimental data of clays fired at several temperatures. This permitted to explain differences in the behavior of red ceramics that was sintered with clays presenting distinct particle shapes.
88
Abstract: Pt/rare-earth cathode catalysts were synthesized by the alcohol-reduction process and its structure was investigated by transmission electron microscopy (TEM), energy dispersive analyses (EDS), X-ray Diffraction (XRD). The electrochemical behavior of the cathode catalyst was analyzed by cyclic voltammetry (CV) chronoamperommetry (CA).
94
Abstract: Porous titanium has been used for grafts and implant coatings as it allows the mechanical interlocking of the pores and bone. Evaluation of porous scaffolds for bone regeneration is essential for their manufacture. Porosity, pore size, pore shape and pore homogeneity are parameters that influence strongly the mechanical strength and biological functionality. In this study, porous titanium samples were manufactured by powder metallurgy by using pure titanium powders mixed with a pore former. The quantification of the porosity parameters was assessed in this work by geometric method and gamma-ray transmission, the non-destructive techniques and metallographic images processing, a destructive technique. Qualitative evaluation of pore morphology and surface topography were performed by scanning electron microscopy and optical microscopy. The results obtained and the effectiveness of the techniques used were compared in order to select those most suitable for characterization of porous titanium scaffolds.
100
Abstract: Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron.
106
Abstract: Powder metallurgy (P/M) of titanium alloys may lead to the obtainment of components having weak-to-absent textures, uniform grain structure and higher homogeneity compared with conventional wrought products. The production of the Ti-13Nb-13Zr alloy by P/M starting from blended elemental (BE) powders is a cost-effective route considering its versatility and also for allowing the manufacture of complex parts. This alloy due its high biocompatibility and lower modulus of elasticity is a promising candidate for implants fabrication. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering in order to identify the microstructural evolution. Sintered samples were characterized for phase composition, microstructure, microhardness and density. The surface topography of the samples was studied by means of atomic force microscopy (AFM). It was shown that the route is adequate to reach high densities with homogeneous microstructure. Representative AFM images allowed distinguishing a lamellar structure caused by the different phases that are present in the surface of the specimens.
112

Showing 11 to 20 of 186 Paper Titles