Materials Science Forum
Vol. 885
Vol. 885
Materials Science Forum
Vol. 884
Vol. 884
Materials Science Forum
Vol. 883
Vol. 883
Materials Science Forum
Vol. 882
Vol. 882
Materials Science Forum
Vol. 881
Vol. 881
Materials Science Forum
Vol. 880
Vol. 880
Materials Science Forum
Vol. 879
Vol. 879
Materials Science Forum
Vol. 878
Vol. 878
Materials Science Forum
Vol. 877
Vol. 877
Materials Science Forum
Vol. 876
Vol. 876
Materials Science Forum
Vol. 875
Vol. 875
Materials Science Forum
Vol. 874
Vol. 874
Materials Science Forum
Vol. 873
Vol. 873
Materials Science Forum Vol. 879
Paper Title Page
Abstract: Metastable β-type titanium alloys are highly suitable for use as structural biomaterials applied to hard tissue, i.e., as cortical bone (hereafter, bone) replacing implants. However, their mechanical biocompatibitities, such as the Young’s modulus, strength and ductility balance, fatigue strength, resistance against fatigue crack propagation and fracture toughness, require improvenent for increased compatibility with bone. Through deformation, the metastable β-phase in a metastable β-type titanium alloy is transformed into various phases, such as α’ martensite, α” martensite, and ω-phases with exact phase depending by metastable β-phase stability. In addition, twinning is also induced by deformation. Deformation twinning effectively enhances the work hardening in the metastable β-type titanium alloy, leading to increased strength and ductility. This improvement is accompanied by with other deformation-induced transformations including the appearance of deformation-induced martensite and ω-phase transformation. The enhancement of the mechanical biocompatibility of various materials using the abovementioned deformation-induced transformation is described in this paper, for both newly developed metastable β-type Ti-Mo and Ti-Cr alloys for biomedical applications.
125
Abstract: Martensitic Ni-Mn-Ga based alloys are known for the Magnetic Shape Memory (MSM) effect, which upon application of an external magnetic field can generate a strain up to 12 % depending on the microstructure of the martensite. The MSM effect occurs by rearrangement of the martensite variants, which is most advantageous in single crystals. Single crystals are, however, rather tedious to produce and there has been attempts to achieve MSM effect in polycrystals. However, in polycrystals the magnetic field induced shape change remains low as compared to single crystals. As an alternative to the former, hybrid MSM materials offer several advantages. When compared to single crystals, hybrids have extended freedom of shaping, lower raw material price, relatively large MSM strain and easier manufacturability. Embedding MSM particles into a suitable polymer matrix results in actuation function or good vibration damping performance. In the present study we report on the mechanical, structural and magnetic properties of MSM polymer hybrids, which are prepared by mixing gas-atomized Ni-Mn-Ga MSM powder into epoxy matrix and aligning the magnetic particles in a magnetic field.
133
Abstract: Experiments were conducted on an AZ80 magnesium alloy by processing by high-pressure torsion (HPT) at room temperature (296 K) for up to 10 turns under an imposed pressure of 6.0 GPa. Measurements of the Vickers microhardness along diameters and through the disk thicknesses were recorded after HPT to evaluate the evolution towards homogeneity. The results show hardness increases up to a factor of approximately 2 and the deformation is more homogeneous along the disc diameter than through the thickness.
139
Abstract: This paper presents the novel microstructure design, called Harmonic Structure, which gives structural metallic materials outstanding mechanical properties through an innovative powder metallurgy process. Homogeneous and ultra-fine grain (UFG) structure enables the materials high strength. However, such a “Homo-“ and “UFG” microstructure does not, usually, satisfy the need to be both strong and ductile, due to the plastic instability in the early stage of the deformation. As opposed to such a “Homo-and UFG“ microstructure, “Harmonic Structure” has a heterogeneous microstructure consisting of bimodal grain size together with a controlled and specific topological distribution of fine and coarse grains. In other words, the harmonic structure is heterogeneous on micro-but homogeneous on macro-scales. In the present work, the harmonic structure design has been applied to pure metals and alloys via a powder metallurgy route consisting of controlled severe plastic deformation of the corresponding powders by mechanical milling or high pressure gas milling, and subsequent consolidation by SPS. At a macro-scale, the harmonic structure materials exhibited superior combination of strength and ductility as compared to their homogeneous microstructure counterparts. This behavior was essentially related to the ability of the harmonic structure to promote the uniform distribution of strain during plastic deformation, leading to improved mechanical properties by avoiding or delaying localized plastic instability.
145
Abstract: In order to investigate the relationship between the bonding nature and the cooperative relaxation, a comparative study of the relaxation behavior in polymeric and metallic glass forming systems has been performed based on the Bond Strength–Coordination Number Fluctuation (BSCNF) model developed by the authors. In the present work, we studied the correlations between the fragility m, the Vogel temperature T0, the degree of molecular cooperativity NB, and the Kohlrausch exponent βKWW. The results show that T0 and NB increase, whereas βKWW decreases systematically with the increase of m. Reflecting the difference of the interatomic interactions of the materials considered, the analysis by the present study reveals that the value of NB in ion-conducing polymers is about 5 times larger than that in metallic systems, and for each system, the material dependence of βKWW is clearly seen in the fragility index m and the cooperativity NB.
151
Abstract: Typical microstructures of dual-phase (DP) steels consist of hard martensite particles dispersed within a ductile ferritic matrix. These microstructures possess a complex network of grain and interphase boundaries, which, together with the mechanical contrast of their phase composition, control micro-damage initiation mechanisms, induced by deformation. Accordingly, in this study we analyze the influence of individual microstructural features and interfaces on damage nucleation and progression in DP steels with respect to applied tensile strain. Prominent micro-damage mechanisms include cracking of martensite and damage initiation at interphase boundaries. Influence of martensite morphology is discussed based on a statistical analysis of the damage features as observed by electron channeling contrast imaging (ECCI) and electron backscatter diffraction (EBSD) maps. Prior austenite grain boundaries (PAGbs) in martensite show a brittle behavior and are highly susceptible to crack propagation.
157
Abstract: In this study, two different AISI 52100 bearing and D2 tool steels were subjected to ultrasonic nanocrystalline surface modification (UNSM) technique at ambient and high temperature of 500 °C. The objective of this study is to characterize the microstructure and to investigate the effectiveness of UNSM technique on the friction and wear behavior of those steels. The friction and wear behavior of the specimens against AISI52100 bearing steel ball with a diameter of 10 mm was carried out using a micro-tribo tester under dry conditions. The hardness with respect to depth from the top surface was measured using a microhardness. The change in the microstructure of the specimens before and after UNSM treatment was characterized by scanning electron microscopy (SEM). The findings from this preliminary study are expected to be implemented to the bearings and tools to increase the efficiency and performance of the components.
164
Abstract: Mechanical surface treatments are conducted on aerospace components in order to improve their fatigue life through inducing compressive residual stresses, cold work and smoother surface finish. The microstructures of the component surface and subsurface after treatment influence the crack nucleation and crack propagation significantly. This paper studies the effect of Deep Cold Rolling (DCR), a subsurface process using hydrostatically controlled balls, on the resulting microstructure of RR1000, a nickel-based superalloy used in high temperature aerospace applications. In this study, DCR of RR1000 was conducted by varying the diameter of the roller ball with a constant fluid pressure and overlap. Vickers microhardness was measured to characterize the work hardening behavior during DCR. The microstructure of RR1000 subsurface before and after DCR along both the rolling and transverse directions is analyzed further. The results show that deep cold rolling results in a significant variation on the microstructure of RR1000 including elongation of matrix grains and the precipitates, within a depth of 10 μm from the rolling surface. The change in microstructure along the rolling surface is found to be more prominent than along the transverse directions irrespective of the ball diameter.
169
Abstract: Electron beam (EB) welding has been used to realize the seams on 2 mm thick plates of directionally solidified (DS) IN792 superalloy. A grid of the samples has been prepared by varying the pass speed v from 1 to 2.5 m/min, while the other process parameters (power P = 1 kW, acceleration voltage T = 50 kV, beam current I = 20 mA) were kept constant. Experiments were carried out both at room temperature and with pre-heating at 200 °C or 300 °C.Once found the best process conditions (pre-heating at 300 °C; v = 2.5 m/min) the effect of post-welding heat treatments at 700 and 750 °C for increasing time up to 2 hours has been investigated.
175
Abstract: Wire rods are supplied for end users manufactures of products with increasing complexity and mechanical properties requirements. Demanding end users field applications must provide high yield stress, ductility and, in certain cases, toughness. These properties can be improved simultaneously if appropriate rolling technique and alloy design are used. It has been known for decades in the flat rolling industry that microalloyed steels can be produced achieving requirements just mentioned. The technology, however, is less often seen applied at the long products industry.
In order to obtain metallurgical sound products, steelmakers need to run industry scale trials. These, however, are costly, time consuming and results are not always easy to analyze given the number of variables involved. Mathematical models are frequently used in order to reduce plant trials reducing costs. There models already published in the literature suitable for wire rod applications. They are however more concerned with the thermomechanical process than with alloy design. This paper presents a model for wire rod rolling of microalloyed steels in which some consideration to alloy design is taken into account. Predicted and mill trial results were compared. Reasonable agreement was found proving the model to be a valuable tool in both schedule and alloy design.
181