Effect of High Temperature Forming Gas Annealing on Electrical Properties of 4H-SiC Lateral MOSFETs with Lanthanum Silicate and ALD SiO2 Gate Dielectric

Article Preview

Abstract:

We investigated the impact of an initial lanthanum oxide (La2O3) thickness and forming gas annealing (FGA) conditions on the MOSFET performance. The FGA has been shown to dramatically improve the threshold voltage (VT) stability of 4H-SiC MOSFETs. The FGA process leads to low VT shift and high field effect mobility due to reduction of the interface states density as well as traps by passivating the dangling bonds and active traps in the Lanthanum Silicate dielectrics. By optimizing the La2O3 interfacial layer thickness and FGA condition, SiC MOSFETs with high threshold voltage and high mobility while maintaining minimal VT shift are realized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-485

Citation:

Online since:

June 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, IEEE Electron Device Lett., vol. 22, no. 4 (2001), p.176–178.

DOI: 10.1109/55.915604

Google Scholar

[2] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett., vol. 31, no. 7 (2010), pp.710-712.

DOI: 10.1109/led.2010.2047239

Google Scholar

[3] G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett., vol. 34, no. 2 (2013), pp.181-183.

DOI: 10.1109/led.2012.2233458

Google Scholar

[4] G. Liu, B. R. Tuttle, and S. Dhar, Appl. Phys. Rev. vol. 2 (2015), p.021307.

Google Scholar

[5] S. Chowdhury, K. Yamamoto, and T.P. Chow, Mat. Sci. Forum, Vol. 858 (2015), 635-638.

Google Scholar

[6] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J.W. Palmour, Appl. Phys. Lett. 105(18), (2014) 182107.

DOI: 10.1063/1.4901259

Google Scholar

[7] A. Modic, G. Liu, A.C. Ahyi, Y.M. Zhou, P.Y. Xu, M.C. Hamilton, J.R. Williams, L.C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9) (2014) 894–896.

DOI: 10.1109/led.2014.2336592

Google Scholar

[8] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, S. Allen, and J.W. Palmour, Mat. Sci. Forum Vols.821-823 (2015) 749-752.

DOI: 10.4028/www.scientific.net/msf.821-823.749

Google Scholar

[9] X. Yang, B. Lee, and V. Misra, IEEE Trans. Electron Devices, vol. 62, no. 11 (2015), pp.3781-3785.

Google Scholar

[10] Y. Wang, R. Jia, Y. Zhao, C. Li, and Y. Zhang, J. Electronic Materials, Vol. 45, No. 11 (2016), pp.5600-5605.

Google Scholar

[11] K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, Appl. Phys. Lett. 76 (2000) pp.1585-1587.

Google Scholar

[12] N. Inoue, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, Jpn. J. Appl. Phys., vol. 46, no. 10A (2007), pp.6480-6488.

DOI: 10.1143/jjap.46.6480

Google Scholar