Effect of High Temperature Forming Gas Annealing on Electrical Properties of 4H-SiC Lateral MOSFETs with Lanthanum Silicate and ALD SiO2 Gate Dielectric

Abstract:

Article Preview

We investigated the impact of an initial lanthanum oxide (La2O3) thickness and forming gas annealing (FGA) conditions on the MOSFET performance. The FGA has been shown to dramatically improve the threshold voltage (VT) stability of 4H-SiC MOSFETs. The FGA process leads to low VT shift and high field effect mobility due to reduction of the interface states density as well as traps by passivating the dangling bonds and active traps in the Lanthanum Silicate dielectrics. By optimizing the La2O3 interfacial layer thickness and FGA condition, SiC MOSFETs with high threshold voltage and high mobility while maintaining minimal VT shift are realized.

Info:

Periodical:

Edited by:

Robert Stahlbush, Philip Neudeck, Anup Bhalla, Robert P. Devaty, Michael Dudley and Aivars Lelis

Pages:

482-485

Citation:

M. S. Kang et al., "Effect of High Temperature Forming Gas Annealing on Electrical Properties of 4H-SiC Lateral MOSFETs with Lanthanum Silicate and ALD SiO2 Gate Dielectric", Materials Science Forum, Vol. 924, pp. 482-485, 2018

Online since:

June 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] G.Y. Chung, C.C. Tin, J.R. Williams, K. McDonald, R.K. Chanana, R.A. Weller, S.T. Pantelides, L.C. Feldman, O.W. Holland, M.K. Das, and J.W. Palmour, IEEE Electron Device Lett., vol. 22, no. 4 (2001), p.176–178.

DOI: https://doi.org/10.1109/55.915604

[2] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, IEEE Electron Device Lett., vol. 31, no. 7 (2010), pp.710-712.

[3] G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman, and S. Dhar, IEEE Electron Device Lett., vol. 34, no. 2 (2013), pp.181-183.

DOI: https://doi.org/10.1109/led.2012.2233458

[4] G. Liu, B. R. Tuttle, and S. Dhar, Appl. Phys. Rev. vol. 2 (2015), p.021307.

[5] S. Chowdhury, K. Yamamoto, and T.P. Chow, Mat. Sci. Forum, Vol. 858 (2015), 635-638.

[6] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, and J.W. Palmour, Appl. Phys. Lett. 105(18), (2014) 182107.

[7] A. Modic, G. Liu, A.C. Ahyi, Y.M. Zhou, P.Y. Xu, M.C. Hamilton, J.R. Williams, L.C. Feldman, and S. Dhar, IEEE Electron Device Lett. 35(9) (2014) 894–896.

[8] D.J. Lichtenwalner, L. Cheng, S. Dhar, A. Agarwal, S. Allen, and J.W. Palmour, Mat. Sci. Forum Vols.821-823 (2015) 749-752.

DOI: https://doi.org/10.4028/www.scientific.net/msf.821-823.749

[9] X. Yang, B. Lee, and V. Misra, IEEE Trans. Electron Devices, vol. 62, no. 11 (2015), pp.3781-3785.

[10] Y. Wang, R. Jia, Y. Zhao, C. Li, and Y. Zhang, J. Electronic Materials, Vol. 45, No. 11 (2016), pp.5600-5605.

[11] K. Fukuda, S. Suzuki, T. Tanaka, and K. Arai, Appl. Phys. Lett. 76 (2000) pp.1585-1587.

[12] N. Inoue, D. J. Lichtenwalner, J. S. Jur, and A. I. Kingon, Jpn. J. Appl. Phys., vol. 46, no. 10A (2007), pp.6480-6488.

DOI: https://doi.org/10.1143/jjap.46.6480

Fetching data from Crossref.
This may take some time to load.