Advanced Materials Research
Vols. 261-263
Vols. 261-263
Advanced Materials Research
Vols. 255-260
Vols. 255-260
Advanced Materials Research
Vol. 254
Vol. 254
Advanced Materials Research
Vols. 250-253
Vols. 250-253
Advanced Materials Research
Vols. 243-249
Vols. 243-249
Advanced Materials Research
Vols. 239-242
Vols. 239-242
Advanced Materials Research
Vols. 236-238
Vols. 236-238
Advanced Materials Research
Vols. 233-235
Vols. 233-235
Advanced Materials Research
Vols. 230-232
Vols. 230-232
Advanced Materials Research
Vols. 228-229
Vols. 228-229
Advanced Materials Research
Vol. 227
Vol. 227
Advanced Materials Research
Vols. 225-226
Vols. 225-226
Advanced Materials Research
Vol. 224
Vol. 224
Advanced Materials Research Vols. 236-238
Paper Title Page
Abstract: The effect of precursors of Co/γ-Al2O3 catalysts prepared from Co(NO3)2 and (CO)6Co2CC(COOH)2 on the Fischer-Tropsch synthesis (FTS) catalytic performance were investigated. All catalysts were characterised by TGA, BET, pore size distribution analysis and TEM techniques. For Aluminium-supported catalyst, the use of cobalt carbonyl cluster as cobalt precursor resulted in a higher activity and C5+ selectivities compared with the reference catalyst prepared from nitrate at low reaction temperature. The activities can be correlated with the zero valent cobalt metal exist on the support. The chain growth attribute to well dispersed smaller metallic cobalt particles resulted from the partial removal of terminal carbonyls at 150°C.
684
Abstract: A novel gravity-assisted heat pipe with fins was developed. The influences of filling ratio, inclination angle and air velocity at condenser section on the heat transfer characteristics were investigated experimentally. The results show that heat power has an important effect on heat transfer characteristics while inclination angle has little effect on that. The minimum heat transfer resistance is got at the filling ratio equaling about 20%. The heat transfer thermal resistance decreases gradually as the air velocity at condenser section increases.
689
Abstract: NiS was synthesized were prepared by hydrothermal and mechanical alloying routes, respectively, and their microstructures as well as physical and electrochemical properties have been characterized and compared. Based on XRD and SEM analyses, the NiS crystallites with nanoplate structure formed directly during a hydrothermal process. Compared with the mechanical alloying route, the hydrothermal route led to better dispersed nanoparticles with a narrower size distribution. And the electrochemical properties of the materials were characterized by charge-discharge testing and Cyclic-voltammetry. NiS were prepared by hydrothermal show proper cycling properties, its first discharge specific capacity was 584.6mAh/g.
694
Abstract: This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text. Common and cheap organic matters (Glucose anhydrous, Citric acid, Vitamin C, Sucrose) were selected for carbon coatings on LiFePO4. The four pre-treatment processes were employed to optimize the carbon coating process, and through solid state-carbothermal reduction synthesis of LiFePO4/C composites. The structure, morphology and electrochemical performance of the material were studied by XRD, SEM and galvanostatic charge-discharge methods. It is observed that the tap density of citric acid coating material can reach 1.44 g/ml. Conductivity increased four orders of magnitude. At room temperature, the initial discharge specific capacity of the materials is as high as 89.6 mAh/g at 5.0 C (corresponding to 850 mA/g). After 30 cycles, the capacity is 83.9 mAh/g and decay only 2.0 %.
698
Abstract: The cathode material Li3V2 (PO4)3 is synthesized for Lithium Ion batteries based on wet ball-milling then high–temperature carbon-thermal sintering. We had characterized them with the measurements of XRD ray diffraction, elemental analysis and electrochemical property tests. The results show that we synthesized sample is monoclinic structure; We first synthesized the Li3V2 (PO4)3 through the using conductive carbon, the extra conductive carbon can increase the conductivity of the material. The initial charge capacity is 126.16 mAh/g and initial efficiency is 97.84 % at room temperature, charging voltage3.0~ 4.3 V,0.1 C rate charging, respectively and the surface of the material is smooth, it’s grains grow better, there are excess conductive carbon even attached to the material to improve the conductivity of the material.
703
Abstract: The n-tetradecylacrylate-vinyl acetate copolymer (PPV) was prepared from n-tetradecylacrylate and vinyl acetate. The PPV was employed as pour point depressant to improve the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. The result indicated that the solidification (SP) and the cold filter plugging point (CFPP) were affected largely by PPV. And when mass fraction of PPV -14(copolymerization conditions: 80 °C,w(benzoyl peroxide)1%(total weight of raw materials), n(vinyl acetate)∶n(n- tetradecanolacrylate) = 4∶1 ) in diesel fuel was 0.1%wt, the SP reduced by 15.0 °C, the CFPP reduced by 6.0 °C simultaneously; We analysise the different molecular weight of PPV-14, and discover that the molecular weight of PPV-14 is ralated to the the low-temperature fluidity of the -20# diesel from Daqing Petrochemical Company. When mass fraction of PPV -14(molecular weight is 15000, distribution coefficient is 3.11) in diesel fuel was 0.1% wt, the SP reduced by 18.0 °C, the CFPP reduced by 7.0 °C, simultaneously.
708
Abstract: To understand the distribution of the alkylene bridge bonds which connect aromatic moieties and utilize coal effectively, Shenfu coal (SFC), its solvent extraction fractions and carbon disulfide (CS2)/tetrahydrofuran (THF) inextractable matter (RE) were subject to ruthenium ion-catalyzed oxidation (RICO). The results suggest that the carbon number of the alkylene bridge bonds range from C0 to C30 and that dominant alkylene linkage are C2 and C3 in SFC, a,w-diarylalkanes are soluble in a CS2/THF mixed solvent, whereas highly condensed aromatic species in SFC show poor solubility in the CS2/THF mixed solvent.
715
Abstract: Solid base CaO was prepared and characterized, which was used to catalyze depolymerization of lignite in supercritical methanol. Methanolysis products were analyzed by gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectroscopy (FTIR). The results showed that the solubility of methanolysis products in organic solvent increased, the majority species of methanolysis products were aliphatic hydrocarbon and oxygenated compounds such as alkyl substitution phenol. CaO can catalyze selective depolymerization of lignite with the reaction of cleavage of ether bond under given condition.
719
Abstract: A series of Al2O3-ZrO2 (AZ-X) composite oxides with different ZrO2 contents were prepared by a chemical precipitation method. Ni-P/AZ-X catalysts were prepared by temperature-programmed reduction. The supports and catalysts were extensively characterized by X-ray diffraction (XRD) and BET. The effects of support composition and P/Ni molar ratios on the catalytic performance of the catalysts were investigated by thiophene hydrodesulfurization (HDS) and pyridine hydrodenitrogenation (HDN). In comparison with Al2O3, Al2O3-ZrO2 (20 wt% ZrO2) composite oxide supported Ni-P catalyst exhibited higher activity and the activities of HDS and HDN increased by 7.5 % and 11.1 %, respectively. Studies of Ni-P/AZ-X catalysts with varying initial P/Ni molar ratios indicated that oxidic precursors with molar ratios of P/Ni = 2/1 yielded catalyst containing phase-pure Ni2P which exhibited optimal activity.
724
Abstract: Renewable products have received much attention. Maleic rosin (MR) was reacted with hydroxyethyl methacrylate (HEMA) to form a macromonomer (MRH) containing double bond which could polymerize with styrene (St) or methyl methacrylate (MMA) through radical polymerization in the toluene. The copolymers MRH-St and MRH-MMA were characterized with infrared spectroscopy (IR), thermogravimetric analysis (TGA) and nuclear magnetic hydrogen resonance (1HNMR). The results showed that both of the copolymers were prepared successfully. As the increase of MRH content in the copolymer, the thermal stability of the copolymer was increased, in additional, it become dissolved in the toluene but swelled in it when more level of the MRH was incorporated.
728