Lateral 4H-SiC MOSFETs with Low On-Resistance by Using Two-Zone Double RESURF Structure

Abstract:

Article Preview

4H-SiC lateral MOSFETs with a double reduced surface field (RESURF) structure have been fabricated in order to reduce drift resistance. A two-zone RESURF structure was also employed in addition to double RESURF structure for achieving both high breakdown voltage and low on-resistance. After device simulation for dose optimization, 4H-SiC two-zone double RESURF MOSFETs have been fabricated. The fabricated MOSFETs block 1380 V and exhibit a low on-resistance of 66 m1cm2 (including a drift resistance of 24 m1cm2) at a gate oxide field of 3 MV/cm. The figure-of-merit of present device is about 29 MW/cm2, which is the best performance among any lateral MOSFETs. The drift resistance of the fabricated double RESURF MOSFETs is only 50 % or even lower than that of single RESURF MOSFETs. Temperature dependence of device characteristics is also discussed.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

815-818

DOI:

10.4028/www.scientific.net/MSF.556-557.815

Citation:

M. Noborio et al., "Lateral 4H-SiC MOSFETs with Low On-Resistance by Using Two-Zone Double RESURF Structure", Materials Science Forum, Vols. 556-557, pp. 815-818, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.