Defect Control in Growth and Processing of 4H-SiC for Power Device Applications

Article Preview

Abstract:

Extended defects and deep levels generated during epitaxial growth of 4H-SiC and device processing have been reviewed. Three types in-grown stacking faults, (6,2), (5,3), and (4,4) structures, have been identified in epilayers with a density of 1-10 cm-2. Almost all the major deep levels present in as-grown epilayers have been eliminated (< 1x1011 cm-3) by two-step annealing, thermal oxidation at 1150-1300oC followed by Ar annealing at 1550oC. The proposed two-step annealing is also effective in reducing various deep levels generated by ion implantation and dry etching. The interface properties and MOSFET characteristics with several gate oxides are presented. By utilizing the deposited SiO2 annealed in N2O at 1300oC, a lowest interface state density and a reasonably high channel mobility for both n- and p-channel MOSFETs with an improved oxide reliability have been attained.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

645-650

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.T. Leonard et al.: Mat. Sci. Forum, Vols. 600-603 (2009), p.7.

Google Scholar

[2] IEEE Trans. Electron Devices Vol. 55 (2008), No. 8 (Special Issue on SiC Electronics).

Google Scholar

[3] V.V. Afanas'ev, M. Bassler, G. Pensl, and M. Schulz: phys. stat. sol. (a), Vol. 162 (1997), p.321.

Google Scholar

[4] M. Benamara et al: Appl. Phys. Lett. Vol. 86 (2005), 021905.

Google Scholar

[5] H. Tsuchida, I. Kamata, and M. Nagano: J. Crystal Growth, Vol. 306 (2007), p.254.

Google Scholar

[6] T. Kimoto, N. Miyamoto, and H. Matsunami: IEEE Trans. Electron Devices Vol. 46 (1999), p.471.

Google Scholar

[7] H. Fujiwara, T. Kimoto, and H. Matsunami: Appl. Phys. Lett. Vol. 87 (2005), 051912.

Google Scholar

[8] M. Tajima, E. Higashi, T. Hayashi, H. Kinoshita, and H. Shiomi: Appl. Phys. Lett., Vol. 86 (2005), 061914.

Google Scholar

[9] G. Feng, J. Suda, and T. Kimoto: Appl. Phys. Lett., Vol. 92 (2008), 221906.

Google Scholar

[10] G. Feng, J. Suda, and T. Kimoto: Appl. Phys. Lett., Vol. 94 (2009), 091910.

Google Scholar

[11] T. Hori, K. Danno, and T. Kimoto: J. Crystal Growth, Vol. 306 (2007), p.297.

Google Scholar

[12] H. Tsuchida, I. Kamata, and M. Nagano: J. Crystal Growth, 310 (2008), p.757.

Google Scholar

[13] J.P. Bergman et al.: Mat. Sci. Forum, Vols. 353-356 (2001), p.299.

Google Scholar

[14] J. Senzaki, K. Kojima, T. Kato, A. Shimozato, and K. Fukuda: Appl. Phys. Lett., Vol. 89 (2006), 022909.

DOI: 10.1063/1.2221525

Google Scholar

[15] S. Ha, P. Mieszkowski, M. Skowronski, and L.B. Rowland: J. Crystal Growth, Vol. 244 (2002), p.257.

Google Scholar

[16] J.J. Sumakeris et al.: Mat. Sci. Forum, Vols. 556-557 (2007), p.77.

Google Scholar

[17] H. Tsuchida et al. : Mat. Sci. Forum, Vols. 483-485 (2005), p.97.

Google Scholar

[18] R.E. Starlbush et al.: Appl. Phys. Lett., Vol. 94 (2009), 041916.

Google Scholar

[19] X. Zhang et al.: J. Appl. Phys., Vol. 102 (2007), 093520.

Google Scholar

[20] T. Dalibor et al.: phys. status solidi (a), Vol. 162 (1997), p.199.

Google Scholar

[21] C. Hemmingsson et al.: J. Appl. Phys., Vol. 81 (1997), p.6155.

Google Scholar

[22] K. Danno and T. Kimoto: J. Appl. Phys., Vol. 101 (2007), 103704.

Google Scholar

[23] L. Storasta et al.: Appl. Phys. Lett., Vol. 78 (2001), p.46.

Google Scholar

[24] P.B. Klein et al.: Appl. Phys. Lett., Vol. 88 (2006), 052110.

Google Scholar

[25] K. Danno, D. Nakamura, and T. Kimoto: Appl. Phys. Lett., Vol. 90 (2007), 202109.

Google Scholar

[26] L. Storasta, J. P. Bergman, E. Janzén, A. Henry, and J. Lu: J. Appl. Phys., Vol. 96 (2004), p.4909.

Google Scholar

[27] K. Danno and T. Kimoto: J. Appl. Phys., Vol. 100 (2006), 113728.

Google Scholar

[28] K. Danno, T. Hori, and T. Kimoto: J. Appl. Phys., Vol. 101 (2007), 053709.

Google Scholar

[29] L. Storasta and H. Tsuchida: Appl. Phys. Lett., Vol. 90 (2007), 062116.

Google Scholar

[30] T. Hiyoshi and T. Kimoto: Appl. Phys. Exp., Vol. 2 (2009), 041101.

Google Scholar

[31] K. Taniguchi, Y. Shibata, and C. Hamaguchi: J. Appl. Phys., Vol. 65 (1989), p.2723.

Google Scholar

[32] Y. Hijikata, H. Yaguchi, and S. Yoshida: Appl. Phys. Exp., Vol. 2 (2009), 021203.

Google Scholar

[33] T. Hiyoshi and T. Kimoto: Appl. Phys. Exp., Vol. 2 (2009), 091101.

Google Scholar

[34] T. Ohno and N. Kobayashi: J. Appl. Phys., Vol. 91 (2002), p.4136.

Google Scholar

[35] M. Nagano et al.: Mat. Sci. Forum, Vols. 615-617 (2009), p.477.

Google Scholar

[36] K. Kawahara, G. Alfieri, and T. Kimoto: J. Appl. Phys., Vol. 106 (2009), 013719.

Google Scholar

[37] K. Kawahara, T. Hiyoshi, G. Alfieri, G. Pensl, and T. Kimoto: these proceedings.

Google Scholar

[38] K. Kawahara, G. Alfieri, M. Krieger, and T. Kimoto: these proceedings.

Google Scholar

[39] N.S. Saks and A.K. Agarwal: Appl. Phys. Lett., Vol. 77 (2000), p.3281.

Google Scholar

[40] S. Dimitrijev, H.F. Li, H.B. Harrison, D. Sweatman: IEEE Trans. Electron Dev. Lett., Vol. 18 (1997), p.175.

Google Scholar

[41] G.Y. Chung et al.: IEEE Electron Device Lett., Vol. 22 (2001), p.176.

Google Scholar

[42] T. Zheleva, A. Lelis, G. Duscher, F. Liu, I. Levin, and M. Das: Appl. Phys. Lett., Vol. 93 (2008), 022108.

DOI: 10.1063/1.2949081

Google Scholar

[43] T. Kimoto, Y. Kanzaki, M. Noborio, H. Kawano: Jpn. J. Appl. Phys., Vol. 44 (2005), p.1213.

Google Scholar

[44] T. Kimoto, H. Kawano, M. Noborio, J. Suda: Mater. Sci. Forum, Vols. 527-529 (2006), p.987.

Google Scholar

[45] M. Grieb et al.: Mat. Sci. Forum, Vols. 615-617 (2009), p.521.

Google Scholar

[46] M. Noborio, J. Suda, and T. Kimoto: IEEE Trans. Electron Devices, Vol. 56 (2009), p. (1953).

Google Scholar