Materials Science Forum Vol. 879

Paper Title Page

Abstract: One of the main challenges during continuous casting of microalloyed steel is to avoid the formation of transverse surface cracks on the steel slabs. These cracks occur due to severe mechanical and thermal stresses in the strand during the straightening operation. The reason for this phenomenon is a ductility loss of austenite in a typical temperature range of 700°C - 1100°C. One of the main mechanisms reducing the ductility is the precipitation of carbides and nitrides. In this work, we correlate ductility loss and precipitation state accompanying two model cooling strategies in a microalloyed steel grade. Continuously cooled samples show a minimum of ductility at temperatures around 750°C. With increasing temperature, deformability recovers again to reach full ductility again at 950°C. In contrast, samples treated with a fast intermediate cooling and reheating show constant low ductility in this entire temperature range. A transmission electron microscopy (TEM) investigation shows nanometer-sized NbC precipitates in the low ductility states. In contrast, in the samples with high ductility, larger NbC precipitates with lower number densities are observed. The experimental results show a good accordance with corresponding precipitation kinetics simulations carried out with the MatCalc software package.
2107
Abstract: The modification mechanism of Sb on eutectic Si phase of Al-Si alloys was not understood very well. In this paper the modification effects of Sb on Al7SiMg alloy were investigated by computer aided cooling curve thermal analysis coupled with microstructure observation. The results show that the addition of Sb with 0.1%~0.25% amount has refining effect on eutectic Si phase, and this modification effect can be recorded by the cooling curve. The addition of Sb decreases the growth temperature of the eutectic solidification (TEG) by 5.0 °C to 7.8 °C, and this indicates that there is an undercooling effect with Sb modification. Moreover, faster cooling rate can obtain more superior morphology of eutectic Si, which can be changed from short rod to nearly granular particles. The morphology of eutectic Si is nearly unchanged with holding time extending from 0.5h to 2.5h, which means Sb has long modification effect for Al-Si alloys.
2113
Abstract: Evolution behavior of pores in 7050 aluminum alloy during hot compression process has been investigated by finite element (FE) numerical simulation. The representative volume element (RVE) model containing one isolated pore is built, in which the gas in pore is treated as ideal gas. Effects of initial pore inner pressure and deformation temperature on pore evolution have been investigated. The simulation results indicate that stress concentration exists around the pore in the compressing process. At the simple compression condition, the inner pressure of the pore increases but the volume decreases as the bulk metals deforms. However, the volume reaches a plateau after the yield point of bulk metal. The plateau volume depends on the initial inner pressure of the pore and the flow stress of the bulk metal. Since the inner pressure of the pore balances with the flow stress of bulk metal at the interface, the temperature affects the evolution behavior of the pore through its influence on the flow stress of the bulk metal primarily.
2119
Abstract: A brief report is given on recent studies of the atomistic processes during charging of battery cathode material LixCoO2 by means of magnetometry and positron annihilation. A set-up for operando magnetometry is implemented which, for the first time, allowed to continuously monitor the distinct variation of the magnetic susceptibility χ of LixCoO2 which occurs during consecutive charging and discharging cycles. The variation of χ with Li+ content in the concentration range 1>x≥0.77 arises from a variation of the electronic density of states and from electronic correlation effects. The χ (x)-behaviour for x<0.77 shows that oxygen is involved in the charging process. Positron annihilation reveals vacancy-type defects on the Li-sublattice, the size of which increases with Li-extraction. Indication for Li-reordering at the reversibility limit of Li extraction is found which correlates with χ (x)-variations in this concentration regime. First measurements on LixCoO2 thin-films performed at the positron beam line NEPOMUC of FRM II at the Heinz Maier-Leibnitz neutron source will be presented.
2125
Abstract: Global warming is the driving force for developing new functional thermoelectric generators based on new materials which contain at least one of the elements Si, Se, or Sn. We describe four processing methods and their characterization by SEM and thermoelectric properties. The earth-abundant Mg2Si requires the method of cyclic hydrogen loading, which has two advantages: It suppresses the oxide formation, and promotes the driving force for formation of the intermetallic phase. While the clathrate BaCuSi and the Half-Heusler alloy (TiZr)NiSn, as most intermetallic alloys, can economically be produced by arc-melting, the Se-alloys CuTiSe and CuFeSe need to be processed by the powder-in-tube method and their Seebeck-voltage measurements up to +/- 0.04 mV/K and output power of 4 μW at ΔT= 400 K are reported here for the first time.
2131
Abstract: Using a fiber laser welding head, crack-free WC-Co/Steel weld depositions are obtained with optimized welding parameters. The microstructure, composition, phase, structure, and bend strength are analyzed using optical metallography, scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and bend test. The influence of the microstructure and WC/matrix interfaces in the vicinity of joint failure at the cemented carbide side is discussed. It is evident that the deposit consists of austenite dendrites and interdendritic eutectic carbides. The austenite further transforms to martensite on-cooling. The flexural bend strength and yield strength of the joints attained 970 MPa and 876 MPa, respectively. Bend fracture occurs at the HAZ in the cemented carbide side of the joint, characterized with cleavage fracture and quasi-cleavage fracture. TEM and HRTEM image of WC/Co interfaces verified the W2C and eta phase formation in the HAZ that contributed to the embrittlement.
2138
Abstract: Continuous annealing processes were applied to a 980MPa cold-rolled dual phase steel (Fe-0.11C-2.5Mn-0.5Si-0.4Cr) and the effect of continuous annealing temperature on microstructure and mechanical properties was investigated. The microstructures were observed and analyzed by optical microscopy (OM), scanning electron microscopy (SEM), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The mechanical properties were measured by uniaxial tensile tests. The results revealed that the steel is composed of a certain percentage of ferrite, martensite and perhaps a small amount of retained austenite as well. As the annealing temperature increased, the volume fraction of martensite reached to 67% from 48% and the morphology translated to lath-like from M/A island. As a consequence, the ultimate tensile strength (UTS) and yield strength had a moderate increase from 1070 to 1110 MPa and 580 to 640 MPa, respectively. Meanwhile, the fracture elongation rose to the maximum 12.6% firstly and then decreased to about 9.0%. The optimizing mechanical properties with UTS up to 1090 MPa, yield ratio about 0.54 and fracture elongation about 13% could be obtained at the annealing temperature of 790°C for 120s.
2144
Abstract: Rechargeable Mg batteries have received intensive attention as affordable rechargeable batteries with high electromotive force, high energy density, and high safety. Mg possesses two valence electrons and has the lowest standard electrode potential (ca. -2.36 V vs. SHE) among the air-stable metals. There is another advantage that Mg metal can be used as an active material because Mg metal hardly forms dendrites. However, the slow diffusion of Mg ions in solid crystals prevents the realization of active materials for Mg rechargeable batteries at room temperature. Although some complex oxides have been reported to work as active materials at higher temperatures, Chevrel compounds are still the gold standards, which work at room temperature. However, the working voltage of the Mg battery using a Chevrel compound for the cathode is only ca. 1.2 V, which is far below that of Li-ion batteries (3-5 V). Nevertheless, Chevrel compounds have the significant advantage that a relatively large space exists in the crystal structure, which allows for fast Mg ion diffusion. In the present study, we investigated some materials with framework structures as cathodes for Mg batteries, which can alleviate the electrostatic constraint between Mg ions and cathode constituents. Specifically, we investigated the redox behavior of the thin films of Prussian blue and Prussian blue analogues in electrolytes containing an Mg salt using electrochemical quartz crystal microbalance and X-ray absorption spectroscopy. In addition, we discuss the electrochemical insertion/extraction behavior of Mg ions and their solvation structures.
2150
Abstract: The 7000 series alloys have the highest strength in the aluminum alloys, but lower fatigue properties than 2000 series alloys. Thus, 7000 series alloys are not applied to a large proportion of the aircraft components. However, the mechanism for this has not been elucidated yet. In humid air, hydrogen embrittlement based on intergranular cracking has been known to occur in 7000 series alloys. To date, in order to explain the difference in the fatigue crack growth behavior in the two series alloys, the effect of the test environment on the fatigue crack growth of the two series alloys has been investigated in this study. A 7075-type as well as 2024-type alloy with relatively coarse equi-axed grains was T6-tempered and subjected to fatigue crack growth test in humid and dry environments. Crack growth rate at low ΔK level seemed to be larger in the 7075-type alloy than the 2024-type alloy in the humid air, when assessed by means of gradually decreasing K method. In order to clarify this result, crack growth rate of the two alloys was assessed by means of gradually increasing K method as well as decreasing K method. Crack growth rate of the 7075-type alloy in moist air was concluded to be the largest in consistent with the previous study. Thus, the large fatigue crack growth rate of the 7075-type alloy is attributable to hydrogen embrittlement.
2153
Abstract: The highly-correlated electron system Sr1-xSmxMnO3 (SSMO) with the simple-perovskite structure has been found to exhibit fascinating electronic states accompanying antiferromagnetic and ferromagnetic orderings. It was, in particular, reported that the electronic state for 0.46 ≤ x ≤ 0.54 was characterized by the coexistence state consisting of the A-type antiferromagnetic and ferromagnetic states. However, the features of the coexistence state in this Sm-content range have not been understood yet. We have thus investigated the crystallographic features of prepared SSMO samples with 0.46 ≤ x ≤ 0.55, mainly by transmission electron microscopy. As a result, all prepared SSMO samples were first confirmed to have the orthorhombic-Pnma structure at 300 K. When the temperature was lowered from 300 K, in the case of x=0.47, the disordered-Pnma state was found to be transformed into an orbital-modulated (OM) state accompanying an incommensurate modulation. The notable feature of the OM state is that the state becomes unstable with increasing Sm contents at 100 K. In other words, the OM state was never changed into the CE-type state with the orbital and charge modulations. In addition, no orbital-ordered state for the A-type antiferromagnetic ordering was also found for 0.46 ≤ x ≤ 0.55.
2158

Showing 361 to 370 of 441 Paper Titles