Solid State Phenomena Vols. 178-179

Paper Title Page

Abstract: The electrical properties of dome-shaped and pyramid-shaped Ge Quantum Dots (QDs) embedded in p-type Silicon are reported. Capacitance-Voltage (T-CV) characteristics are reported for the temperature range of 35 K to 296 K. The T-CV results showed the desired charge carrier density of the Silicon, on the order of 1016 cm-3, at room temperature. Two shoulders are observed in the CV curves between 270 K and 175 K. They are explained as charge stored in the dome- and pyramid-shaped QDs. Below 175 K, only one shoulder is observed in the CV measurements, attributed to charge trapped in dome-shaped QDs. The DLTS study confirms these results. Using a reverse bias between -0.1 V and -1 V two peaks are seen at 50 and 70 K. They are explained in terms of the boron state (the one at 50 K) and charged stored on pyramid-shaped Ge QDs (the one at 70 K). Increasing the reverse bias from -1 V to -1.4 V shows the appearance of a peak around 60 K, attributed to dome-shaped Ge QDs. At the same time, a shoulder appears around 100 K for -1 V, which extends to larger temperatures as the reverse bias magnitude is increased. The activation energies found are around 50 meV (due to Boron), 150 to 250 meV (due to pyramid-shaped Ge QDs), 300 to 350 meV (due to dome-shaped Ge QDs) and 425 meV (due to both dome- and pyramid-shaped Ge QDs).
67
Abstract: We investigate self-assembled pyramid-shaped Ge Quantum Dots (QDs) with lateral dimensions of 15 nm, and heights of 2.5-3 nm. These Ge QDs were grown by Molecular Beam Epitaxy (MBE) on n-type Si(100) substrates using the Sb-mediated growth mode. The resistivity of the substrates was about 5 Ωcm. The Si buffer layer below the QDs and the Si capping layer above them were doped up to 1018 cm-3 by Sb. Cross-section transmission electron microscopy shows the QDs and the Sb delta-doped layers. Using standard photolithographic techniques, a 0.3 mm2 Au Schottky contact was applied to the epilayer, while an Ohmic contact was formed on the back side of the substrate. Plotting C-2 vs. V plot reveals the nominal doping of 1018 cm-3. DLTS studies revealed two levels with fitted activation energies of 49 meV and 360-390 meV. They are related to the Sb doping and the Pb interface states, respectively. The simulation suggests a deep level with a volumetric concentration of 2.55×1015 cm-3. Multiplying this value by the thickness of the depletion region obtained from the CV measurements, we find that the deep level capture about 5.8×109 electrons per cm2.
72
Abstract: Nanoindentation was used to measure the mechanical properties of 200mm diameter (100) CZ Si wafers subjected to the initiation and propagation of micro-crack defects. Silicon amorphization and phase changes were observed and accompanied by a monotonic decrease in hardness and elastic modulus, as the nanoindent tip approached the micro-crack shank or point. Identification and profiling of these localized phase transitions was obtained in the vicinity of the micro-cracks using electron back-scattered diffraction (EBSD) and Raman spectroscopy. It was found that the amorphous Si regions extend for about 10 µm at the edges and ahead of a moving crack tip. Wafers from ingots grown at faster growth rates with enhanced thermal gradients and associated point defect/impurity produce large localized stresses in the wafer core, which are capable of changing the path of propagating cracks. FTIR and Raman spectroscopy analysis were used to quantify local stresses due to radial oxygen precipitate variations. The resulting stress modified crack deviates considerably from energetically favorable [110]/(111) directions, following a radial path suggesting a ductile fracture failure mode.
79
Abstract: In this contribution a classification of recombination active defects in multicrystalline silicon solar cells made from electronic grade (eg) and upgraded metallurgical grade (umg) silicon feedstock is introduced. On a macroscopic scale the classification is performed by using forward and reversed biased electroluminescence imaging (EL / ReBEL) and imaging of sub-band defect luminescence (ELsub). The luminescence behavior due to structural defects already present in the wafer can be divided into two groups based on their recombination and prebreakdown behavior. As a first step towards a more detailed analysis of the cause for these differences, the classification was also performed on microscopic scale. For this ReBEL and ELsub was performed under an optical microscope (µReBEL/µELsub) and EL was replaced by Electron Beam Induced Current (EBIC). The defect types observed on a macroscopic scale could also be observed on a microscopic scale; however, a third defect type had to be introduced. Finally we propose a qualitative model for the different classified types of recombination active defect structures that can explain the observed recombination and prebreakdown behavior.
88
Abstract: In the present work the results of theoretical analysis of the process of diffusion of covalently bonded atoms (interstitial oxygen atoms) in Si1-xGex alloys are presented. The diffusion coefficient (activation energy and pre-exponential factor) was calculated by means of quantum-chemical simulations (Hartree–Fock, NDDO, PM5) and the dependences of the activation energy and pre-exponential factor on Ge atoms concentration (x) were analyzed with the use of the percolation theory. The study has revealed that the diffusivity of impurities (defects) in alloys can decrease considerably at low concentration (x<0.05) of a minor alloy component and this variation results from the fact that the pre-exponential factor depends on the concentration of component elements of the alloy. The alloy-induced decrease in the pre-exponential factor is associated with removal of the degeneracy of the number of equivalent diffusion paths. It is found that a sharp decrease in the pre-exponential factor causes experimentally observed decreases in the coefficient of diffusion of interstitial oxygen atoms and in the rate of formation of oxygen thermal donors in Si1‑xGex crystals at x~0.01.
94
Abstract: Thin crystalline silicon films on glass substrate, fabricated using solid phase crystallization for application in thin-film solar cells, were investigated by deep level transient spectroscopy (DLTS). The analyses of the DLTS spectra obtained during temperature scans revealed presence of carrier traps related to dislocations in silicon. Other carrier traps of yet unknown nature were detected as well. Variations of electrical activity of the traps were achieved applying variations in the process of the film formation. These changes were also detected during DLTS measurements, suggesting a possibility for applying of DLTS for the investigation and characterization of the thin-film Si material on glass.
100
Abstract: Investigations of silicon layers grown on carbon foil were carried out using the Electron Beam Induced Current (EBIC) methods. The most of grain boundaries in these ribbons are (111) twin boundaries elongated along the direction. The EBIC measurements showed that the recombination contrast of dislocations and of the most part of twin boundaries at room temperature is practically absent and only random grain boundaries and very small part of twin boundaries produce a noticeable contrast. At lower temperatures a number of electrically active twin boundaries increases but the most part of them remains inactive. A contamination with iron increases the recombination activity of random boundaries but not the activity of twin boundaries.
106
Abstract: Multi-quantum wells (MQW) with nanometer thick crystalline Si layers are considered among the promising light absorbers for application in the next generation of photovoltaic cells. Proper crystallization of the initially amorphous Si (a-Si) layers in such MQW presents a challenge. Recently it was shown that light-induced solid-phase crystallization (LISPC) leads to almost complete crystallization of Si layers in the MQW. In this report we present and discuss recent results, problems and prospects related to the large-scale LISPC process of MQW structures on glass.
110
Abstract: The properties of electron-beam crystallized, large-grained silicon layers of about 10 µm thickness on glass have been studied by combining EBIC, EBSD and photoluminescence. It is found that most grains are free of dislocations. From a detailed analysis based on the dependence of EBIC collection efficiency on beam energy we conclude that the recombination properties of the layers are mainly determined by the bulk diffusion length. The estimated bulk diffusion length in the dislocation-free layer regions is in the range of roughly 5 – 7 µm, depending on the recombination velocity assumed for the rear surface. In dislocated regions the diffusion length drops to 1 µm or less. Close to some twin boundaries, an unsusual improvement of the electrical layer properties has been observed. In addition, wave-like inhomogeneities of the layer properties have been established, resulting probably from instabilities during the crystallization process.
116
Abstract: Graphene films were grown on thin polycrystalline Ni using a buried amorphous carbon (a-C) layer as C source. Rapid thermal processes (RTP) at temperatures from 600 to 800°C were used to promote C diffusion into Ni and its subsequent segregation on Ni surface, during the sample cool down. RTP at 800°C was the optimal condition for graphene film formation. Micro-Raman spectroscopy showed that the grown film is mostly composed by multilayers of graphene. Atomic force microscopy showed that the film presents peculiar corrugations (wrinkles), isotropically oriented and with heights ranging from from ~1 to ~15 nm. Selected area diffraction by transmission electron microscopy on the MLG membranes shows a rotational disorder between the stacked graphene layers.
125

Showing 11 to 20 of 80 Paper Titles