Silicon Carbide and Related Materials 2006

Paper Title Page

Authors: Owen J. Guy, T.E. Jenkins, Michal Lodzinski, A. Castaing, S.P. Wilks, P. Bailey, T.C.Q. Noakes
Abstract: The high density of interface states of thermally grown oxides on silicon carbide has prompted research into alternative oxidation methods and post oxidation anneals. One such alternative is oxidation of a deposited sacrificial silicon layer. A recent variation of this technique is a partial oxidation of the deposited Si layer, so that a thin Si layer remains between the SiO2 and SiC layers. If the SiO2/Si interface has lower interface state densities than the SiO2/SiC interface, the SiO2/Si/SiC hetero-structure could yield improved channel mobilities in MOS devices. Moreover, by correct optimization of the MOSFET device structure, breakdown can be designed to occur in the bulk SiC layer, thus maintaining a high blocking voltage. Post oxidation annealing in N2O is another technique often used to reduce interface state densities. However, little is known about the chemical and physical nature of these N2O oxidized dielectrics. Ellipsometric and Medium Energy Ion Scattering (MEIS) investigations of conventional SiO2/SiC interfaces compared with SiO2/Si/SiC hetero-junction structures and N2O oxidized samples are reported.
509
Authors: Kok Keong Lew, Brenda L. VanMil, Rachael L. Myers-Ward, Ronald T. Holm, Charles R. Eddy, D. Kurt Gaskill
Abstract: Hydrogen etching of 4H-SiC has been performed in a hot-wall chemical vapor deposition reactor to reduce surface damage and to create a bilayer-stepped surface morphology, optimal for initiation of growth on 4H-SiC substrates offcut 4° and 8° towards the <11-20> direction. To understand how step bunching evolves during the ramp to growth temperature, samples were etched ending at temperatures from 1400 to 1580°C under 0, 2 or 10 sccm of propane (C3H8) addition to hydrogen. Initial exploratory growth of 5 μm thick epilayers on the 4° etched surfaces are also discussed. Atomic force microscopy (AFM) and Nomarski microscopy were employed to investigate changes in the surface morphology. The 8° substrates subjected to H2-C3H8 etching up to growth temperature routinely exhibited bilayer steps. However, when the 4° substrates were etched with a 10 sccm C3H8 flow, considerable step bunching was observed. At 1450°C, with a 10 sccm of C3H8 flow (partial pressure is 1.25x10-5 bar), step bunching started with the formation of ribbon-like steps. Progression to higher temperature etches have shown the coalescence of the ribbons into larger macro-steps up to 30 nm in height. Etching 4° substrates under 2 sccm of C3H8 (partial pressure is 2.5x10-6 bar) or in pure H2 up to 1500°C results in minimal step bunching.
513
Authors: Fredrik Allerstam, G. Gudjónsson, Einar Ö. Sveinbjörnsson, T. Rödle, R. Jos
517
Authors: Atsumi Miyashita, Toshiharu Ohnuma, Misako Iwasawa, Hidekazu Tsuchida, Masahito Yoshikawa
Abstract: The performance of SiC MOSFET devices to date is below theoretically expected performance levels. This is widely considered to be attributed to defect at the SiO2/SiC interface that degrade the electrical performance of the device. To analyze the relationship between defect structures near the interface and electrical performances, advanced computer simulations were performed. A slab model using 444 atoms for an amorphous oxide layer on a 4H-SiC (0001) substrate was made by using first-principles molecular dynamic simulation code optimized for the Earth-Simulator. Simulated heating and rapid quenching was performed for the slab model in order to obtain a more realistic structure and electronic geometry of a-SiO2/4H-SiC interface. The heating temperature, the heating time and the speed of rapid quenching were 4000 K, 3.0 ps and -1000 K/ps, respectively. The interatomic distance and the bond angles of SiO2 layers after the calculation are agree well with the most probable values of bulk a-SiO2 layers, and no coordination defects were observed in the neighborhood of SiC substrate.
521
Authors: Konstantin V. Emtsev, Thomas Seyller, Florian Speck, Lothar Ley, P. Stojanov, J.D. Riley, R.C.G. Leckey
Abstract: Graphitization of the 6H-SiC(0001) surface as a function of annealing temperature has been studied by ARPES, high resolution XPS, and LEED. For the initial stage of graphitization – the 6√3 reconstructed surface – we observe σ-bands characteristic of graphitic sp2-bonded carbon. The π-bands are modified by the interaction with the substrate. C1s core level spectra indicate that this layer consists of two inequivalent types of carbon atoms. The next layer of graphite (graphene) formed on top of the 6√3 surface at TA=1250°C-1300°C has an unperturbed electronic structure. Annealing at higher temperatures results in the formation of a multilayer graphite film. It is shown that the atomic arrangement of the interface between graphite and the SiC(0001) surface is practically identical to that of the 6√3 reconstructed layer.
525
Authors: M. Hetzel, Charíya Virojanadara, Wolfgang J. Choyke, Ulrich Starke
Abstract: Ordered reconstruction phases on the 4H-SiC(1102) surface have been investigated using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES) and scanning tunneling microscopy (STM). After initial hydrogen etching, the samples were prepared by Si deposition and annealing in ultra-high vacuum (UHV). Two distinct reconstruction phases develop upon annealing, first with a (2×1), and at higher temperatures with a c(2×2) LEED pattern. After further annealing the fractional order LEED spots vanish and a (1x1) pattern develops. For the (2×1) phase, STM micrographs show that adatom chains develop on large flat terraces, which in view of AES consist of additional Si. These highly linear and equidistant chains represent a self-assembled well-ordered pattern of nanowires developing due to the intrinsic structure of the 4H-SiC(1102) surface. For the c(2×2) phase AES indicates a surface composition close to the bulk stoichiometry. For the (1×1) phase a further Si depletion is observed.
529
Authors: M. Silly, H. Enriquez, J. Roy, M. D'Angelo, P. Soukiassian, T. Schuelli, M. Noblet, G. Renaud
Abstract: In order to give experimental insights on the atomic structure of the Si atomic wires developing on the β-SiC(100) surface, we use synchrotron radiation-based x-ray diffraction at grazing incidence to study a network of such atomic lines in a 5x2 surface array. Our results lead to an accurate surface and sub-surface structure determination evidencing a structure in agreement with a two adlayer symmetric dimer reconstruction. This atomic structure is significantly different from the 3x2 surface structure, giving new insights on the Si atomic lines stability.
533
Authors: Marc Avice, Ulrike Grossner, Ola Nilsen, Helmer Fjellvåg, Bengt Gunnar Svensson
Abstract: Al2O3 has been grown by Atomic Layer Chemical Vapour Deposition (ALCVD) on ntype 4H-SiC using O3 as an oxidant and tri-methyl-aluminum (TMA) as a precursor. After deposition, annealing at 1000°C during 3h in different atmospheres (Ar, N2 and O2) was performed. Interface properties were studied by Capacitance-Voltage (CV) and Thermal Dielectric Relaxation Current (TDRC) measurements. The highest near-interface trap density (Nit) was deduced to be 4x1012 eV-1cm-2 between 0.36 eV and 0.5 eV below the conduction band, Ec, for O2 annealed samples, 2.8x1012 eV-1cm-2 between 0.42 eV and 0.56 eV below Ec for Ar annealed samples and 2.2x1012 eV-1cm-2 between 0.4 eV and 0.6 eV below Ec for N2 annealed samples. Only samples annealed in Ar exhibit a nearly trap free region close to Ec. Annealing in N2 is found to decrease Nit between 0.3 and 0.7 eV but shows a slightly higher Nit close the conduction band compared to the Ar case.
537
Authors: Peter Deák, T. Hornos, Christoph Thill, Jan Knaup, Adam Gali, Thomas Frauenheim
Abstract: Preliminary results of a systematic theoretical study on the reactions of NO with a model 4H-SiC/SiO2 interface are presented. We show, that nitridation is a complex process, in which the balance between various mechanisms depends on doping and temperature. For weakly doped (1015-16 cm-3) n-type SiC, the crucial effect is an additional oxidation without creation of excess carbon at the interface.
541
Authors: Filippo Giannazzo, Fabrizio Roccaforte, S.F. Liotta, Vito Raineri
Abstract: We present a novel approach based on conductive atomic force microscopy (c-AFM) for nano-scale mapping of the Schottky barrier height (SBH) between a semiconductor and an ultrathin (1-5 nm) metal film. The method was applied to characterize the uniformity of the Au/4H-SiC Schottky contact, which is attractive for applications due to the high reported (∼1.8 eV) SBH value. Since this system is very sensitive to the SiC surface preparation, we investigated the effect on the nano-scale SBH distribution of a ∼2 nm thick not uniform SiO2 layer. The macroscopic I-V characteristics on Au/SiC and Au/not uniform SiO2/SiC diodes showed that the interfacial oxide lowers the average SBH. The c-AFM investigation is carried out collecting arrays of I-V curves for different tip positions on 1μm×1μm area. From these curves, 2D SBH maps are obtained with 10- 20 nm spatial resolution and energy resolution <0.1 eV. The laterally inhomogeneous character of the Au/SiC contact is demonstrated. In fact, a SBH distribution peaked at 1.8 eV and with tails from 1.6 eV to 2.1 eV is obtained. Moreover, in the presence of the not uniform oxide at the interface, the SBH distribution exhibits a 0.3 eV peak lowering and a broadening (tails from 1.1 eV to 2.1 eV).
545

Showing 121 to 130 of 248 Paper Titles