Materials Science Forum
Vols. 610-613
Vols. 610-613
Materials Science Forum
Vol. 609
Vol. 609
Materials Science Forum
Vol. 608
Vol. 608
Materials Science Forum
Vol. 607
Vol. 607
Materials Science Forum
Vol. 606
Vol. 606
Materials Science Forum
Vols. 604-605
Vols. 604-605
Materials Science Forum
Vols. 600-603
Vols. 600-603
Materials Science Forum
Vol. 599
Vol. 599
Materials Science Forum
Vols. 595-598
Vols. 595-598
Materials Science Forum
Vol. 594
Vol. 594
Materials Science Forum
Vols. 591-593
Vols. 591-593
Materials Science Forum
Vol. 590
Vol. 590
Materials Science Forum
Vol. 589
Vol. 589
Materials Science Forum Vols. 600-603
Paper Title Page
Abstract: We report on the heteroepitaxial growth of 3C-SiC layers by Vapor-Liquid-Solid (VLS) mechanism on Si face 6H-SiC substrates, on-axis and 3.5° off. The Si-Ge melts, which Si content was varied from 10 to 50 at%, were fed by 3 sccm of propane. The growth temperature was varied from 1200 to 1600°C. It was found that 3C-SiC layers (either twinned or twinned free) form at low temperature while homoepitaxy is achieved at high temperature. The proposed growth mechanism involves the initial formation of 3C islands during the heating ramp (below 1200°C) and the dissolution of these islands when temperature increases. Geometrical aspects, such as the step density at the surface and the vertical component of the growth, are also considered to explain the difference observed between the on and off axis substrates.
195
Abstract: The growth kinetics of 3C-SiC heteroepitaxial layers on α-SiC substrates by Vapour-Liquid-Solid (VLS) mechanism in Ge-Si melts was investigated. Various parameters were studied such as temperature, melt composition, propane flux and substrate nature (polytype, polarity and misorientation). It was found that the growth rate increases with increasing temperature, propane flux, Si content of the melt and misorientation of the substrate. The calculated activation energy (from 4.7 to 6.6 kcal/mole depending on the substrate type) is very small suggesting that the limiting process is the diffusion of the dissolved carbon inside the melt. The carbon solubility inside the melt mainly affects the carbon dissolution kinetics from the gas phase. The results also suggest that surface effects are important through the layer polarity and crystalline quality.
199
Abstract: Twin-free 3C-SiC layers were recently obtained by Vapour-Liquid-Solid mechanism on a a-SiC(0001) substrate using Si-Ge melt. The formation of cubic layers is rather unexpected since growth from the melt is known to promote lateral growth and should thus give homoepitaxial layers. The study of the early stage of such growth, after a simple contact between the melt and the substrate (without adding propane), reveals the precipitation of 3C-SiC elongated islands upon the substrate surface. The chemical interactions inside the Ge-Si-C ternary phase diagram suggest an initial dissolution of the SiC seed in contact with a Ge-rich melt (below 1200°C). When the Si content of the melt subsequently increases upon heating, the dissolved carbon atoms precipitate on the seed surface under the form of 3C-SiC islands. When propane is added, these islands enlarge and coalesce to form a complete 3C layer.
203
Abstract: We discuss the influence of the growth conditions (composition of the gaseous phase, growth duration, growth temperature) and wafer properties (orientation, miscut, thickness) on the residual strain of 3C-SiC films grown on silicon substrates. We show that the strain related effects are observed for both studied orientations however some of them (namely the creep effects) were up to now stated only for (100) oriented layers. We also point out the main difference in strain control between the (111) and (100) orientations.
207
Abstract: In this work a comparison between atmospheric pressure (AP) and low pressure (LP) carbonization as the first step in the growth process of 3C-SiC on Si substrates is presented. Three different Si substrate orientations have been studied and compared. Characterization analysis has been performed by Atomic Force Microscopy (AFM), X-ray Diffraction Spectroscopy (XRD) and Transmission Electron Microscopy (TEM). XRD and AFM analysis show a lower roughness and a better quality for LPCVD carbonized samples. Substrate orientation plays an important role both in the generation as well as in the effect of such defects in the subsequent growth process, leading to a rougher SiC surface for growth on (110) Si while micro-twin effects are limited for growth on (111) Si, resulting in an extremely flat film.
211
Abstract: This study refers, through different microscopies, about the carbonization effects on differently oriented Si surfaces. A statistical study on the relationship between some process parameters (such as temperature, process time) and void dimensions and density, for three Si substrate orientations, is reported.
215
Abstract: Cubic silicon carbide (3C-SiC) growth using Pendeo-epitaxy technique was successfully achieved on Si(001) substrates. 3C-SiC was grown by chemical vapor deposition (CVD) with silane and propane as precursors. Effects of underlying stripes and seed 3C-SiC layers thickness on PE 3C-SiC films were investigated. Root mean square (RMS) measurements using atomic force microscope (AFM) showed that surface morphology of PE 3C-SiC films remarkably improves with an increase of the seed 3C-SiC layer thickness, and the values were from 9.8 nm for 3 µm thick seed layer to 0.5 nm for 10 µm thick seed layer thickness. Additionally, domain boundary densities were counted, and the values also strongly depend on the seed layer thickness: from >1500/mm2 for 3 µm seed layer thickness to <100/mm2 for 10 µm seed layer thickness. Pendeo-epiaxial growth profiles with various width/separation dimensions of stripes were also investigated, and stripes with width of 10 µm and separation of 5 µm provide the best profile and process viability.
219
Abstract: 3C-SiC epitaxial layers were grown on on-axis Si (001) substrates by low-pressure hot-wall chemical vapour deposition. Depending on the growth parameters, the residual strain in the 3C-SiC layer was seen to be tensile or compressive. In this work, the influence of parameters, such as growth temperature and C/Si ratio in the vapour phase, on residual strain and macroscopic layer bow is investigated. We found that the wafer bow changes from convex, at a deposition temperature of 1270° C, to concave at 1370° C. High resolution x-ray diffraction data indicate that the crystal-line perfection of the layers is lower for decreasing deposition temperature and increasing compres-sive strain. No remarkable influence of the C/Si ratio in the gaseous atmosphere on the FWHM of the rocking curve was observed.
223
Abstract: SiC growth on as-received and striated Si(001) substrates was studied. SiC films were grown by pulsed-jet chemical vapor deposition using monomethylsilane as a gas source at 780°C. Two kinds of Si surfaces were prepared. One was an as-received Si(001) surface and the other was an striated (scratched) Si(001) surface. It was found that nucleation rate of SiC is quite different between these two kinds of surfaces. The film growth rate was very low for the as-received Si(001) surface compared with the striated surface, and after 8 hours of growth hardly any film was grown and only square-shaped islands were observed. On the other hand, for the undulant substrate about 100nm thick 3C-SiC film was grown after 8 hours of deposition. This film growth rate difference appears to be due to the difference in density of nucleation sites. For the as-received Si(001) surface, nucleation site density appears to be quite small due to the atomically flat surface. On the other hand, for the undulant surface, nucleation site density was large enough for the film to grow faster.
227
Abstract: The structural and morphological modifications induced by the carbonization stage upon 3C-SiC heteroepitaxial films grown on (111) and (100) oriented silicon substrates have been investigated. The crystalline quality of the films is strongly dependent on the carbonization parameters (propane flow rate and duration of carbonization). The (111) heteroepitaxial films coalesce more rapidly and present a lower dependence on the carbonization conditions than (100) films. By comparing the evolution of the interfacial defects (voids) density with existing models, we show that this is related to the initial mechanisms occurring during the carbonization stage. The twin defects densities on (111), (100) and (211) films are also investigated and the role of the only carbonization stage on their formation is studied.
231