Materials Science Forum Vols. 600-603

Paper Title Page

Abstract: The influence of in situ etching of Si-face n-4H-SiC wafers in H2 and propane on the surface morphology of the grown epi-layers were examined using differential interference contrast (DIC) optical microscopy and atomic force microscope (AFM). Two defect-selective etching techniques were applied in order to reveal the type and spatial distribution of defects in the substrates and epi-layers. It was found that for the flow applied in this experiment propane plays a significant role for the etching process. Depending on temperature and etching time we obtained completely different picture of substrate surface morphology. The propane etching was verified as a tool for substrate surface improvement.
155
Abstract: In this work, nitrogen doping was investigated during the low-temperature halo-carbon epitaxial growth of 4H-SiC on Si- and C-faces. The dependencies of nitrogen incorporation on nitrogen flow rate, Si/C ratio, growth rate, and temperature were investigated. It was established that the efficiency of nitrogen incorporation for the C-face growth at 1300 °C is higher than that for the Si-face for a wide range of the growth conditions. Seeming deviation of the Si/C ratio dependence from the “site-competition” trend confirmed the critical role of the silicon vapor condensation during the low-temperature epitaxy. Opposite trends for the nitrogen doping dependence on the growth rate were observed on the Si- and C-faces. Finally, a complex temperature dependence of the nitrogen doping in the temperature range from 1300 to 1450 0C was observed.
159
Abstract: In this work, the local-loading effect and its influence on the growth rate enhancement and the growth rate non-homogeneity is investigated during the halo-carbon low-temperature selective epitaxial growth (LTSEG) using an SiO2 mask. The average growth rate during the LTSEG can be more than three-times higher than in blanket epitaxy at the same growth conditions. Both the size of the LTSEG seed windows and the surrounding area covered with the mask determine the growth rate non-homogeneity. A model for predicting the growth rate distribution is suggested.
163
Abstract: Thick (> 25 µm) 4H n+ epitaxial layer growth was performed on 4H n+ substrates utilizing chlorine containing etch chemistries in a hot wall CVD system. Optimization of the n+ epitaxial layer growth was achieved by varying C/Si ratio and N2 flow. Desired epitaxial layers have doping levels > 5x1018 cm-3, epitaxial surface roughness <10 nm on a 20x20 µm area and overall micropipe density reduction. To confirm the conversion of micropipes into closed core screw dislocations, microscopic examination of the epitaxial and wafer surfaces was carried out after KOH etching. Grazing incidence x-ray topography (XRT) as well as cross sectional XRT and microscopy were also performed. The cross sectional evaluation showed that the dissociation of the micropipes occurs very close to the epitaxy/wafer interface.
167
Abstract: The migration enhanced embedded epitaxy (ME3) mechanism and 2D dopant distribution of the embedded trench region is investigated with the aim to realize the all-epitaxial, normally-off junction field effect transistor (JFET). We found that the embedded growth consists of two main components. First one is the direct supply without gas scattering and the other one is the surface migration supply via the trench opening edge, which dominate the ME3 process. An inhomogeneous 2D distribution of Aluminum (Al) concentration was revealed for the first time in the 4H-SiC embedded trench regions by the combined analysis of secondary ion mass spectrometry (SIMS) and scanning spreading resistance microscopy (SSRM) results. The maximum variation of Al concentration in the trench is estimated to be about 4-times, which suggests that the Al concentration is highest for the (0001) plane and lowest for the trench corner (1-10x) plane. Al concentration in the (1-100) plane, which determines the JFET p-gate doping level is 1.5-times lower than (0001) plane for trench region fabricated on Si-face wafers.
171
Abstract: The in-situ doping of aluminum and nitrogen in migration enhanced embedded epitaxy (ME3) is investigated with the aim to apply it to the realization and fabrication of all-epitaxial, normally-off 4H-SiC JFET devices. This ME3 process consists of the epitaxial growth of an n-doped channel and a highly p-doped top gate in narrow trenches. We found that the nitrogen doping in the n-channel (a-face) is a factor 1.5 higher than layers grown with the same process on Si-face wafers. Due to the low C/Si ratio and the low silane flow rate used in the ME3 process, the growth of the p-doped top gate needs high flow rates of the aluminum precursor trimethylaluminum for several hours, which contaminates the CVD reactor and causes aluminum memory effects. These aluminum memory effects can be reduced by an extra high temperature bake-out run.
175
Abstract: Solution growth on off-axis 4H-SiC sublimation substrate as a buffer layer for the subsequent CVD epitaxial growth was investigated. Dislocation conversion and propagation from the substrate to the CVD epitaxial layer through the solution grown buffer layer was inspected by molten KOH etch pit observation. Effective dislocation conversion from BPD to TED as an effect of the buffer layer insertion with no drastic change in the total EPD was confirmed.
179
Abstract: At sufficiently high temperatures PLD deposited TaC films can be grown epitaxially on 4H-SiC (0001) substrates; at lower temperatures the films recrystallize and ball up forming a large number of pinholes. The growth temperature for epitaxy was found to be 1000°C, and it was facilitated by the epitaxial growth of a thin (2 nm) transition layer of hexagonal Ta2C. High temperature annealing produced changes in the surface morphology, caused grain growth, and created pin holes through a recrystallization process in the films deposited at the lower temperatures, while the films deposited at the higher temperatures remained virtually unchanged. Using TEM it is shown that the (0001) basal planes of the hexagonal 4H-SiC and Ta2C phases are aligned, and they were also parallel to the (111) plane in the cubic TaC with the [101] cubic direction being parallel to the hexagonal [2110] hexagonal direction. The Ta2C interlayer most likely is formed because its lattice parameter in the basel plane (3.103 Ǻ) is intermediate between that of the 4H-SiC (3.08 Ǻ) and the TaC (3.150 Ǻ). Given that Al.5Ga.5N is lattice matched to TaC, it could be an excellent substrate for the growth of GaN/AlGaN heterostructures.
183
Abstract: Top seeded solution growth of SiC on on-axis 6H-SiC was performed using Si solvent at growth temperature as high as 1645-1870°C. It was found that different polytypes of SiC layers were grown on 6H-SiC depending on gas species during growth. The growth under He atmosphere produced 6H-SiC homoepitaxial layers. On the other hand, the growth under N2-He atmosphere led to 3C-SiC epitaxial layers. It was obvious that the nitrogen dissolved in solvent strongly favoured the 3C-SiC polytype formation on 6H-SiC. We also conducted characterization of 3C-SiC layers grown on 6H-SiC (0001)Si by TEM, molten KOH etching and precise XRD measurement.
187
Abstract: We have successfully grown 3C-SiC(111) single crystals 10mm x 10mm in dimension on 6H-SiC(0001) substrate by the solution growth method using cold crucible technique. The growth rate of 60μm/hr was achieved. The use of Si-Ti-C ternary solution as well as the electromagnetic stirring are responsible for the relatively high growth rate in solution method. The threading dislocation density is low and the etch pit density amounts to 105-106 /cm2 at the lowest region. Polytype of the grown layer has changed from 3C to 6H with an increase in the dip depth of substrate. A mathematical model was applied to get better understanding of what happened in the crucible.
191

Showing 41 to 50 of 330 Paper Titles