Materials Science Forum Vols. 645-648

Paper Title Page

Abstract: A wide characterization of crystalline defects involved in the 3C-SiC heteroepitaxy on Si is here presented. The aim of this work is to show how analysis techniques, such as transmission electron microscopy (TEM) and x-ray diffraction (XRD), can help the researcher in the study of structural defects. The work is focused on stacking faults and microtwins since both of them influence the atomic stacking along the {111} 3C-SiC planes. Their distinction can indeed be troublesome. It will be shown that TEM can be helpful, by choosing a determined zone axis of observation, for defect characterization and distinction. Moreover, the impact of microtwins on the crystal quality of 3C-SiC films is studied by performing XRD pole figures. By means of this technique and simulations, we found that the <111> direction of the SiC crystal is not aligned to the <110> Si direction, but it is shifted of 3.5° along the <002> Si direction, due to second-order twinnings in the 3C-SiC crystal.
371
Abstract: Different sublimation growth conditions of 3C-SiC approaching a bulk process have been investigated with the focus on appearance of macrodefects. The growth rate of 3C-SiC crystals grown on 6H-SiC varied from 380 to 460 μm/h with the thickness of the crystals from 190 to 230 μm, respectively. The formation of macrodefects with void character was revealed at the early stage of 3C-SiC crystal growth. The highest concentration of macrodefects appears in the vicinity of the domain in samples grown under high temperature gradient and fastest temperature ramp up. The formation of macrodefects was related to carbon deficiency which appear due to high Si/C ratio which is used to enable formation of the 3C-SiC polytype.
375
Abstract: Microstructures of switch-back epitaxy cubic silicon carbide (3C-SiC) before and after Al ion implantation were investigated by transmission electron microscopy (TEM). Stacking faults aligned along the {111} were observed in 3C-SiC. A surface bulge was observed in some regions and planar defects were observed under the bulge region. After ion implantation of 3C-SiC, defects were observed to be distributed up to a depth approximately 500 nm from the surface.
379
Abstract: In the present work the defects appearing in layers grown by liquid phase epitaxy on different substrates are compared. The used seeds were (i) 3C-SiC with (111) orientation, grown heteroepitaxially on (0001) 4H-SiC or 6H-SiC substrates by continuous feed physical vapour transport process and the vapour-liquid-solid mechanism, respectively, and (ii) 3C-SiC wafer with (100) orientation from HOYA. The structural and optical investigation showed that (i) on the (111) substrates, due to the appearance of silicon and 6H-SiC inclusions, a layer which consisted of a sequence of long period polytypes was formed. The dominant polytype formed was 21R-SiC, which after successive transformation to 39R- and 57R- SiC led to the formation of 6H-SiC on the top of the layer. (ii) On the (100) substrates, a 3C-SiC layer with comparatively uniform defect density was formed. The main defects were stacking faults and their density was reducing during the process.
383
Abstract: -SiC and -SiC/SiO2 core-shell nanowires (NWs) grown on silicon substrates by three different processes, based on the use of i) carbon monoxide, ii) silane with propane and iii) carbon tetrachloride precursors, are analysed by structural and optical techniques. Spectroscopic cathodoluminescence studies show a luminescence enhancement in core-shell structures, ascribed to an effective role of the shell as both carrier injecting barrier and passivation layer. In NWs grown using CCl4 precursor, a peculiar luminescence with dominant red component at about 2 eV has been detected and ascribed to point defects related to an unintentional oxygen incorporation.
387
Abstract: This paper describes the characteristics of porous 3C-SiC with in-situ N-doping concentrations. Polycrystalline (poly) 3C-SiC thin films were deposited on p-type Si (100) substrates by APCVD using hexamethyildisilane (HMDS: Si2(CH3)6). The porous 3C-SiC (pSiC) was achieved by anodized with 380 nm UV-LED. The characteristics of the N2 doped pSiC were evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and photo luminescence (PL). Average pore diameter is about 50 nm and etched area was increased with N2 doping rate. These results are attributed to decrease the crystallinity by N2 doping. The band gaps of poly 3C-SiC films and porous 3C-SiC films were 2.5 eV and 2.7 eV, respectively.
391
Abstract: We investigate the neutral divacancy in SiC by means of first principles calculations and group theory analysis. We identify the nature of the PL transitions associated with this defect. We show that how the spin state may be manipulated optically in this defect.
395
Abstract: Electron paramagnetic resonance (EPR) was used to study high-purity semi-insulating 4H-SiC irradiated with 2 MeV electrons at room temperature. The EPR signal of the EI4 defect was found to be dominating in samples irradiated and annealed at ~750°C. Additional large-splitting 29Si hyperfine (hf) lines and also other 13C and 29Si hf structures were observed. Based on the observed hf structures and annealing behaviour, the complex between a negative carbon vacancy-carbon antisite pair (VCCSi–) and a distance positive carbon vacancy ( ) is tentatively proposed as a possible model for the EI4 defect.
399
Abstract: In non-annealed 6H-SiC samples that were electron irradiated at room temperature, a new EPR signal due to a S=1 defect center with exceptionally large zero-field splitting (D = +652•10-4 cm-1) has been observed under illumination. A positive sign of D demonstrates that the spin-orbit contribution to the zero-field splitting exceeds by far that of the spin-spin interaction. A principal axis of the fine structure tilted by 59° against the crystal c-axis as well as the exceptionally high zero-field splitting D can be qualitatively understood by the occurrence of additional close-lying defect levels in defect clusters resulting in comparatively large second-order spin-orbit coup¬ling. A tentative assignment to vacancy clusters is supported by the observed annealing behavior.
403
Abstract: Low voltage electron irradiations with electron energies down to the C-displacement threshold have been performed and the irradiated samples studied subsequently by low temperature photoluminescence microscopy. The results were found to depend on the electron energy, the n(N)- or p(Al)-doping and the C- or Si-face irradiated. The implications of these results for the current understanding of the atomic origins of these lines are discussed.
407

Showing 91 to 100 of 300 Paper Titles