Materials Science Forum Vols. 645-648

Paper Title Page

Abstract: The influence of stacking fault (SF) generation on the reverse blocking characteristics has been investigated on SiC 10 kV, 5 A Merged PiN (MPS) diodes. For the first time, we have observed that the generation of SFs under forward biased stress increases the reverse leakage current. In addition, the presence of a secondary diode formed by the electrical stress was observed and attributed to the breakdown voltage failure on certain devices.
331
Abstract: Results of deformation experiments on 4H-SiC single crystals below the usual brittle to ductile transition temperature are reported and discussed in comparison of previous literature data. Si-core and C-core partials are evidenced in the basal plane, and perfect dislocations are also observed on other crystallographic planes. These results could indicate that dislocation activity under high stress is more complex than expected.
335
Abstract: The correlation between leakage current and stacking fault (SF) density in p-n diodes fabricated on 3C-SiC homo-epitaxial layer is investigated. The leakage current density at reverse bias strongly depends on the SF density; an increase of one order of magnitude in the SF density enhances the leakage current by five orders of magnitude at a reverse bias of 400 V. In order to obtain commercially suitable MOSFETs with 10-4Acm-2 at 600V, the SF density has to be reduced below 6×104 cm-2. Photoemission caused by hot electrons, which travel along a leakage path, can be observed at the crossing between a SF and the edge of p-well region; where the maximum electric field is induced. The mechanism of the leakage current is discussed in detail in a separate paper.
339
Abstract: A large leakage current (IR) is observed at reverse bias (VR) in 3C-SiC p+-n diodes. This leakage current is caused by a high density of stacking faults (SFs). The temperature dependence of IR is studied in the temperature range from 100 K to 295 K. It turns out that IR is thermally activated for reverse voltages VR  |170| V. We propose that within this voltage range IR originates from thermally assisted tunneling of electrons and holes from band-like states of the SFs into the conduction and valence band. For VR > |170| V, the thermal barrier is strongly reduced and direct tunneling dominates. These dependences are simulated in the framework of a simplified model.
343
Abstract: A new type of 6H zigzag faults has been identified from high resolution transmission electron microscopy (HRTEM) measurements performed on low-doped 4H-SiC homoepitaxial layer grown on off-axis substrates in a hot-wall CVD reactor. They are made of half unit cells of 6H with corresponding low temperature photoluminescence (LTPL) response ranging from about 3 eV to 2.5 eV at liquid helium temperature.
347
Abstract: The structures of defects that form different types of etch pits on highly N-doped 4H-SiC substrates, that were produced by a sublimation method, after molten KOH etching were characterized. It was found that most of the dislocations in the epitaxial layer originated from defects at the surface of substrate whose etch pit structures were clearly different from the conventional structures. The etch pits were classified into drop, oval, round and caterpillar pits. The drop and oval pits were concluded to be formed by the deformation of conventional etch pits. Round pits were concluded to originate from half loop dislocations and were transformed to complex dislocations by epitaxial growth. Analysis by transmission electron microscopy measurement indicates that slipped edge dislocations (or screw dislocations) on the basal plane form caterpillar pits.
351
Abstract: We investigated the optical properties of stacking faults (SFs) in cubic silicon carbide by photoluminescence (PL) spectroscopy and mapping. The room-temperature PL spectra consisted of a 2.3 eV peak due to nitrogen and two undefined broad peaks at 1.7 eV and 0.95 eV. On the PL intensity mapping for the 2.3 eV peak, SFs appeared as dark lines. SFs which expose carbon atoms (SFC) and silicon atoms (SFSi) on the surface appeared as bright lines and dark lines, respectively, in PL mapping for the 1.7 eV and 0.95 eV peaks. We believe the two undefined peaks are associated with SFC. This technique allows us to detect SFs nondestructively and to distinguish between SFC and SFSi. We further suggest the presence of inhomogeneous stress around SFCs based on the broadening of the 2.3 eV peak.
355
Abstract: Raman spectroscopy was applied to investigate a series of SiC films grown on Si and 6H-SiC substrates by a new method of solid gas phase epitaxy. During the growth characteristic voids are formed in Si at the SiC/Si interface. Raman peak position, intensity and linewidth were used to characterize the quality and the polytype structure of the SiC layers. A large enhancement in the peak intensity of the transverse optical and longitudinal optical phonon modes of SiC is observed for the Raman signal measured at the voids. In addition, scanning electron microscopy and atomic force microscopy were used to investigate the surface morphology of SiC layers.
359
Abstract: 6H-SiC hetero-epitaxially grown on a (111) 3C-SiC was observed with TEM. High-density stacking faults were formed around the hetero-interface, and the density of stacking faults decreased with increasing distance from interface. On the other hand, when 3C-SiC was homo-epitaxially grown on a 3C-SiC, any stacking faults did not exist at the interface between the grown crystal and the seed crystal. Thus, the stacking faults formation started from the 6H/3C hetero-interface. Considering the lattice-mismatch strain between 3C-SiC and 6H-SiC, the strain energy is equivalent to the stacking fault energy of 6H-SiC. This similarity suggests that the stacking faults formation could be caused by the relaxation of the lattice-mismatch strain.
363
Abstract: In the present work the structural quality of 3C-SiC layers grown by sublimation epitaxy is studied by means of conventional and high resolution transmission electron microscopy. The layers were grown on Si-face 6H-SiC nominally on-axis substrates at a temperature of 2000°C and different temperature gradients, ranging from 5 to 8 °C /mm. The influence of the temperature gradient on the structural quality of the layers is discussed. The formation of specific twin complexes and conditions for lower stacking fault density are investigated.
367

Showing 81 to 90 of 300 Paper Titles